SentenceTransformer based on ibm-granite/granite-embedding-english-r2
This is a sentence-transformers model finetuned from ibm-granite/granite-embedding-english-r2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("shatonix/granite-embedding-math-cs")
sentences = [
'Calculate $(-1)^{47} + 2^{(3^3+4^2-6^2)}$.',
'Context: \nAnswer: 127',
'4750',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.604 |
| cosine_accuracy@3 |
0.666 |
| cosine_accuracy@5 |
0.688 |
| cosine_accuracy@10 |
0.716 |
| cosine_precision@1 |
0.604 |
| cosine_precision@3 |
0.222 |
| cosine_precision@5 |
0.1376 |
| cosine_precision@10 |
0.0716 |
| cosine_recall@1 |
0.604 |
| cosine_recall@3 |
0.666 |
| cosine_recall@5 |
0.688 |
| cosine_recall@10 |
0.716 |
| cosine_ndcg@10 |
0.659 |
| cosine_mrr@10 |
0.641 |
| cosine_map@100 |
0.6484 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.604 |
| cosine_accuracy@3 |
0.666 |
| cosine_accuracy@5 |
0.694 |
| cosine_accuracy@10 |
0.72 |
| cosine_precision@1 |
0.604 |
| cosine_precision@3 |
0.222 |
| cosine_precision@5 |
0.1388 |
| cosine_precision@10 |
0.072 |
| cosine_recall@1 |
0.604 |
| cosine_recall@3 |
0.666 |
| cosine_recall@5 |
0.694 |
| cosine_recall@10 |
0.72 |
| cosine_ndcg@10 |
0.6608 |
| cosine_mrr@10 |
0.6421 |
| cosine_map@100 |
0.6495 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.61 |
| cosine_accuracy@3 |
0.672 |
| cosine_accuracy@5 |
0.69 |
| cosine_accuracy@10 |
0.72 |
| cosine_precision@1 |
0.61 |
| cosine_precision@3 |
0.224 |
| cosine_precision@5 |
0.138 |
| cosine_precision@10 |
0.072 |
| cosine_recall@1 |
0.61 |
| cosine_recall@3 |
0.672 |
| cosine_recall@5 |
0.69 |
| cosine_recall@10 |
0.72 |
| cosine_ndcg@10 |
0.6633 |
| cosine_mrr@10 |
0.6454 |
| cosine_map@100 |
0.6531 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.612 |
| cosine_accuracy@3 |
0.67 |
| cosine_accuracy@5 |
0.69 |
| cosine_accuracy@10 |
0.712 |
| cosine_precision@1 |
0.612 |
| cosine_precision@3 |
0.2233 |
| cosine_precision@5 |
0.138 |
| cosine_precision@10 |
0.0712 |
| cosine_recall@1 |
0.612 |
| cosine_recall@3 |
0.67 |
| cosine_recall@5 |
0.69 |
| cosine_recall@10 |
0.712 |
| cosine_ndcg@10 |
0.6612 |
| cosine_mrr@10 |
0.645 |
| cosine_map@100 |
0.652 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.602 |
| cosine_accuracy@3 |
0.656 |
| cosine_accuracy@5 |
0.68 |
| cosine_accuracy@10 |
0.722 |
| cosine_precision@1 |
0.602 |
| cosine_precision@3 |
0.2187 |
| cosine_precision@5 |
0.136 |
| cosine_precision@10 |
0.0722 |
| cosine_recall@1 |
0.602 |
| cosine_recall@3 |
0.656 |
| cosine_recall@5 |
0.68 |
| cosine_recall@10 |
0.722 |
| cosine_ndcg@10 |
0.6584 |
| cosine_mrr@10 |
0.6386 |
| cosine_map@100 |
0.6448 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,500 training samples
- Columns:
anchor, positive, and id
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
id |
| type |
string |
string |
string |
| details |
- min: 8 tokens
- mean: 80.08 tokens
- max: 512 tokens
|
- min: 9 tokens
- mean: 165.53 tokens
- max: 512 tokens
|
- min: 3 tokens
- mean: 3.81 tokens
- max: 4 tokens
|
- Samples:
| anchor |
positive |
id |
Stella’s antique shop has 3 dolls, 2 clocks and 5 glasses for sale. She sells the dolls for $5 each. The clocks are priced at $15 each. The glasses are priced at $4 each. If she spent $40 to buy everything and she sells all of her merchandise, how much profit will she make? |
Context: Answer: 25 |
3430 |
You are tasked with creating a Ruby program that defines a service for creating a project in a Continuous Integration (CI) system. The service should be able to execute with valid parameters and handle specific scenarios.
The program should include the following: - A class called Ci::CreateProjectService that defines the service for creating a project. - A method within the Ci::CreateProjectService class called execute that takes in three parameters: current_user (representing the current user), project (representing the project to be created), and ci_origin_project (optional, representing the project to use as a template for settings and jobs). - The execute method should handle the following scenarios: 1. When executed with valid parameters, it should return a new instance of Ci::Project that is persisted. 2. When executed without a project dump (empty string), it should raise an exception. 3. When executed with a ci_origin_project for forking, it should use ... |
Context: Answer: ruby<br>class Ci::CreateProjectService<br> def execute(current_user, project, ci_origin_project = nil)<br> if project.empty?<br> raise StandardError, 'Project dump is required'<br> end<br><br> new_project = Ci::Project.new<br> new_project.save<br><br> if ci_origin_project<br> new_project.shared_runners_enabled = ci_origin_project.shared_runners_enabled<br> new_project.public = ci_origin_project.public<br> new_project.allow_git_fetch = ci_origin_project.allow_git_fetch<br> end<br><br> new_project<br> end<br>end<br> |
656 |
Why is the Insertion Sort algorithm considered optimal for nearly sorted datasets, and how does its time complexity compare to other quadratic sorting algorithms? |
Context: Answer: Insertion Sort operates in O(n²) time complexity in the worst case, but for nearly sorted datasets, it achieves O(n) time complexity. This is because it only requires a minimal number of swaps to place elements in order. For datasets where most elements are already in their correct positions, the number of inversions (pairs out of order) is small, reducing the number of comparisons and swaps. This contrasts with other quadratic algorithms like Selection Sort, which must scan the entire dataset for each element, leading to O(n²) operations regardless of initial order. The efficiency of Insertion Sort for nearly sorted data stems from its ability to leverage existing order, making it a better choice for such scenarios. |
1305 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
learning_rate: 2e-05
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: True
load_best_model_at_end: True
gradient_checkpointing: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
project: huggingface
trackio_space_id: trackio
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: True
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: no
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: True
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| -1 |
-1 |
- |
0.6213 |
0.6214 |
0.6163 |
0.6036 |
0.5899 |
| 0.0709 |
10 |
7.9281 |
- |
- |
- |
- |
- |
| 0.1418 |
20 |
7.4864 |
- |
- |
- |
- |
- |
| 0.2128 |
30 |
5.7244 |
- |
- |
- |
- |
- |
| 0.2837 |
40 |
5.5573 |
- |
- |
- |
- |
- |
| 0.3546 |
50 |
4.4921 |
- |
- |
- |
- |
- |
| 0.4255 |
60 |
4.7436 |
- |
- |
- |
- |
- |
| 0.4965 |
70 |
4.4213 |
- |
- |
- |
- |
- |
| 0.5674 |
80 |
4.26 |
- |
- |
- |
- |
- |
| 0.6383 |
90 |
4.3477 |
- |
- |
- |
- |
- |
| 0.7092 |
100 |
5.3008 |
- |
- |
- |
- |
- |
| 0.7801 |
110 |
4.8522 |
- |
- |
- |
- |
- |
| 0.8511 |
120 |
4.116 |
- |
- |
- |
- |
- |
| 0.9220 |
130 |
4.3905 |
- |
- |
- |
- |
- |
| 0.9929 |
140 |
4.6642 |
- |
- |
- |
- |
- |
| 1.0 |
141 |
- |
0.6465 |
0.6459 |
0.6489 |
0.6534 |
0.6513 |
| 1.0638 |
150 |
3.6441 |
- |
- |
- |
- |
- |
| 1.1348 |
160 |
3.7862 |
- |
- |
- |
- |
- |
| 1.2057 |
170 |
3.8553 |
- |
- |
- |
- |
- |
| 1.2766 |
180 |
4.1245 |
- |
- |
- |
- |
- |
| 1.3475 |
190 |
3.2211 |
- |
- |
- |
- |
- |
| 1.4184 |
200 |
3.6225 |
- |
- |
- |
- |
- |
| 1.4894 |
210 |
3.2978 |
- |
- |
- |
- |
- |
| 1.5603 |
220 |
4.1481 |
- |
- |
- |
- |
- |
| 1.6312 |
230 |
3.7347 |
- |
- |
- |
- |
- |
| 1.7021 |
240 |
3.3605 |
- |
- |
- |
- |
- |
| 1.7730 |
250 |
4.1893 |
- |
- |
- |
- |
- |
| 1.8440 |
260 |
3.0874 |
- |
- |
- |
- |
- |
| 1.9149 |
270 |
3.6089 |
- |
- |
- |
- |
- |
| 1.9858 |
280 |
3.2254 |
- |
- |
- |
- |
- |
| 2.0 |
282 |
- |
0.6603 |
0.6575 |
0.6623 |
0.6604 |
0.6595 |
| 2.0567 |
290 |
2.699 |
- |
- |
- |
- |
- |
| 2.1277 |
300 |
3.1953 |
- |
- |
- |
- |
- |
| 2.1986 |
310 |
2.6364 |
- |
- |
- |
- |
- |
| 2.2695 |
320 |
3.7468 |
- |
- |
- |
- |
- |
| 2.3404 |
330 |
2.355 |
- |
- |
- |
- |
- |
| 2.4113 |
340 |
2.6586 |
- |
- |
- |
- |
- |
| 2.4823 |
350 |
2.7598 |
- |
- |
- |
- |
- |
| 2.5532 |
360 |
2.846 |
- |
- |
- |
- |
- |
| 2.6241 |
370 |
2.7356 |
- |
- |
- |
- |
- |
| 2.6950 |
380 |
2.4392 |
- |
- |
- |
- |
- |
| 2.7660 |
390 |
3.1543 |
- |
- |
- |
- |
- |
| 2.8369 |
400 |
2.6799 |
- |
- |
- |
- |
- |
| 2.9078 |
410 |
2.657 |
- |
- |
- |
- |
- |
| 2.9787 |
420 |
2.395 |
- |
- |
- |
- |
- |
| 3.0 |
423 |
- |
0.659 |
0.6608 |
0.6633 |
0.6612 |
0.6584 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 4.4.2
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}