ConvNext-Base: Optimized for Qualcomm Devices

ConvNextBase is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of ConvNext-Base found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit ConvNext-Base on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for ConvNext-Base on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 88.6M
  • Model size (float): 338 MB
  • Model size (w8a16): 88.7 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
ConvNext-Base ONNX float Snapdragon® X Elite 7.488 ms 176 - 176 MB NPU
ConvNext-Base ONNX float Snapdragon® 8 Gen 3 Mobile 5.436 ms 0 - 394 MB NPU
ConvNext-Base ONNX float Qualcomm® QCS8550 (Proxy) 7.317 ms 0 - 638 MB NPU
ConvNext-Base ONNX float Qualcomm® QCS9075 11.598 ms 0 - 4 MB NPU
ConvNext-Base ONNX float Snapdragon® 8 Elite For Galaxy Mobile 4.246 ms 0 - 329 MB NPU
ConvNext-Base ONNX float Snapdragon® 8 Elite Gen 5 Mobile 3.352 ms 0 - 332 MB NPU
ConvNext-Base ONNX w8a16 Snapdragon® X Elite 219.265 ms 137 - 137 MB NPU
ConvNext-Base ONNX w8a16 Qualcomm® QCS6490 1158.253 ms 41 - 86 MB CPU
ConvNext-Base ONNX w8a16 Qualcomm® QCS9075 317.703 ms 93 - 96 MB NPU
ConvNext-Base ONNX w8a16 Qualcomm® QCM6690 737.008 ms 34 - 46 MB CPU
ConvNext-Base ONNX w8a16 Snapdragon® 8 Elite For Galaxy Mobile 268.327 ms 78 - 229 MB NPU
ConvNext-Base ONNX w8a16 Snapdragon® 7 Gen 4 Mobile 691.251 ms 35 - 49 MB CPU
ConvNext-Base ONNX w8a16 Snapdragon® 8 Elite Gen 5 Mobile 237.073 ms 89 - 240 MB NPU
ConvNext-Base QNN_DLC float Snapdragon® X Elite 8.589 ms 1 - 1 MB NPU
ConvNext-Base QNN_DLC float Snapdragon® 8 Gen 3 Mobile 6.113 ms 0 - 350 MB NPU
ConvNext-Base QNN_DLC float Qualcomm® QCS8275 (Proxy) 42.453 ms 1 - 279 MB NPU
ConvNext-Base QNN_DLC float Qualcomm® QCS8550 (Proxy) 8.213 ms 0 - 33 MB NPU
ConvNext-Base QNN_DLC float Qualcomm® QCS9075 12.381 ms 1 - 3 MB NPU
ConvNext-Base QNN_DLC float Qualcomm® QCS8450 (Proxy) 20.603 ms 0 - 337 MB NPU
ConvNext-Base QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 4.689 ms 1 - 281 MB NPU
ConvNext-Base QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 3.534 ms 1 - 283 MB NPU
ConvNext-Base QNN_DLC w8a16 Snapdragon® X Elite 6.26 ms 0 - 0 MB NPU
ConvNext-Base QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 4.106 ms 0 - 248 MB NPU
ConvNext-Base QNN_DLC w8a16 Qualcomm® QCS6490 23.818 ms 0 - 2 MB NPU
ConvNext-Base QNN_DLC w8a16 Qualcomm® QCS8275 (Proxy) 14.472 ms 0 - 199 MB NPU
ConvNext-Base QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 5.888 ms 0 - 2 MB NPU
ConvNext-Base QNN_DLC w8a16 Qualcomm® QCS9075 6.122 ms 0 - 2 MB NPU
ConvNext-Base QNN_DLC w8a16 Qualcomm® QCM6690 71.461 ms 0 - 395 MB NPU
ConvNext-Base QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 9.182 ms 0 - 246 MB NPU
ConvNext-Base QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 3.31 ms 0 - 190 MB NPU
ConvNext-Base QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 7.715 ms 0 - 247 MB NPU
ConvNext-Base QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 2.559 ms 0 - 201 MB NPU
ConvNext-Base TFLITE float Snapdragon® 8 Gen 3 Mobile 5.533 ms 0 - 345 MB NPU
ConvNext-Base TFLITE float Qualcomm® QCS8275 (Proxy) 41.241 ms 0 - 274 MB NPU
ConvNext-Base TFLITE float Qualcomm® QCS8550 (Proxy) 7.334 ms 0 - 3 MB NPU
ConvNext-Base TFLITE float Qualcomm® QCS9075 11.149 ms 0 - 177 MB NPU
ConvNext-Base TFLITE float Qualcomm® QCS8450 (Proxy) 19.73 ms 0 - 330 MB NPU
ConvNext-Base TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 4.167 ms 0 - 277 MB NPU
ConvNext-Base TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 3.174 ms 0 - 279 MB NPU

License

  • The license for the original implementation of ConvNext-Base can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/ConvNext-Base