ConvNext-Base: Optimized for Qualcomm Devices
ConvNextBase is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This is based on the implementation of ConvNext-Base found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit ConvNext-Base on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for ConvNext-Base on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 88.6M
- Model size (float): 338 MB
- Model size (w8a16): 88.7 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| ConvNext-Base | ONNX | float | Snapdragon® X Elite | 7.488 ms | 176 - 176 MB | NPU |
| ConvNext-Base | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 5.436 ms | 0 - 394 MB | NPU |
| ConvNext-Base | ONNX | float | Qualcomm® QCS8550 (Proxy) | 7.317 ms | 0 - 638 MB | NPU |
| ConvNext-Base | ONNX | float | Qualcomm® QCS9075 | 11.598 ms | 0 - 4 MB | NPU |
| ConvNext-Base | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 4.246 ms | 0 - 329 MB | NPU |
| ConvNext-Base | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 3.352 ms | 0 - 332 MB | NPU |
| ConvNext-Base | ONNX | w8a16 | Snapdragon® X Elite | 219.265 ms | 137 - 137 MB | NPU |
| ConvNext-Base | ONNX | w8a16 | Qualcomm® QCS6490 | 1158.253 ms | 41 - 86 MB | CPU |
| ConvNext-Base | ONNX | w8a16 | Qualcomm® QCS9075 | 317.703 ms | 93 - 96 MB | NPU |
| ConvNext-Base | ONNX | w8a16 | Qualcomm® QCM6690 | 737.008 ms | 34 - 46 MB | CPU |
| ConvNext-Base | ONNX | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 268.327 ms | 78 - 229 MB | NPU |
| ConvNext-Base | ONNX | w8a16 | Snapdragon® 7 Gen 4 Mobile | 691.251 ms | 35 - 49 MB | CPU |
| ConvNext-Base | ONNX | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 237.073 ms | 89 - 240 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Snapdragon® X Elite | 8.589 ms | 1 - 1 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 6.113 ms | 0 - 350 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 42.453 ms | 1 - 279 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 8.213 ms | 0 - 33 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Qualcomm® QCS9075 | 12.381 ms | 1 - 3 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 20.603 ms | 0 - 337 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 4.689 ms | 1 - 281 MB | NPU |
| ConvNext-Base | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 3.534 ms | 1 - 283 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Snapdragon® X Elite | 6.26 ms | 0 - 0 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Snapdragon® 8 Gen 3 Mobile | 4.106 ms | 0 - 248 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Qualcomm® QCS6490 | 23.818 ms | 0 - 2 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Qualcomm® QCS8275 (Proxy) | 14.472 ms | 0 - 199 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Qualcomm® QCS8550 (Proxy) | 5.888 ms | 0 - 2 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Qualcomm® QCS9075 | 6.122 ms | 0 - 2 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Qualcomm® QCM6690 | 71.461 ms | 0 - 395 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Qualcomm® QCS8450 (Proxy) | 9.182 ms | 0 - 246 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 3.31 ms | 0 - 190 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Snapdragon® 7 Gen 4 Mobile | 7.715 ms | 0 - 247 MB | NPU |
| ConvNext-Base | QNN_DLC | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 2.559 ms | 0 - 201 MB | NPU |
| ConvNext-Base | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 5.533 ms | 0 - 345 MB | NPU |
| ConvNext-Base | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 41.241 ms | 0 - 274 MB | NPU |
| ConvNext-Base | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 7.334 ms | 0 - 3 MB | NPU |
| ConvNext-Base | TFLITE | float | Qualcomm® QCS9075 | 11.149 ms | 0 - 177 MB | NPU |
| ConvNext-Base | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 19.73 ms | 0 - 330 MB | NPU |
| ConvNext-Base | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 4.167 ms | 0 - 277 MB | NPU |
| ConvNext-Base | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 3.174 ms | 0 - 279 MB | NPU |
License
- The license for the original implementation of ConvNext-Base can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
