Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    UnidentifiedImageError
Message:      cannot identify image file <_io.BytesIO object at 0x7fbec551dc60>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                         ^^^^^^^^^
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2543, in __iter__
                  for key, example in ex_iterable:
                                      ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2061, in __iter__
                  batch = formatter.format_batch(pa_table)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/formatting/formatting.py", line 472, in format_batch
                  batch = self.python_features_decoder.decode_batch(batch)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/formatting/formatting.py", line 234, in decode_batch
                  return self.features.decode_batch(batch, token_per_repo_id=self.token_per_repo_id) if self.features else batch
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2161, in decode_batch
                  decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1419, in decode_nested_example
                  return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/image.py", line 190, in decode_example
                  image = PIL.Image.open(bytes_)
                          ^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/PIL/Image.py", line 3498, in open
                  raise UnidentifiedImageError(msg)
              PIL.UnidentifiedImageError: cannot identify image file <_io.BytesIO object at 0x7fbec551dc60>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Polyp-Gen: Realistic and Diverse Polyp Image Generation for Endoscopic Dataset Expansion

Polyp-Gen is a text-guided full-automatic diffusion-based endoscopic image generation framework for realistic and diverse polyp image generation for endoscopic dataset expansion, as presented in Polyp-Gen: Realistic and Diverse Polyp Image Generation for Endoscopic Dataset Expansion. You can use our model for polyp generation.

Code is available here.

Dataset

This dataset was modified by the original LDPolypVideo dataset.

We filtered out some low-quality images with blurry, reflective, and ghosting effects, and finally select 55,883 samples including 29,640 polyp frames and 26,243 non-polyp frames.

[02/26] We update the download link of the training and test dataset at HuggingFace link

Citation

If you find this work helpful, please consider to star🌟 this repo and cite the following paper:

@article{liu2025polyp,
  title={Polyp-Gen: Realistic and Diverse Polyp Image Generation for Endoscopic Dataset Expansion},
  author={Liu, Shengyuan and Chen, Zhen and Yang, Qiushi and Yu, Weihao and Dong, Di and Hu, Jiancong and Yuan, Yixuan},
  journal={arXiv preprint arXiv:2501.16679},
  year={2025}
}

and the original LDPolypVideo paper:

Yiting. Ma, Xuejin. Chen, Kai. Cheng, Yang. Li and Bin. Sun. "LDPolypVideo Benchmark: A Large-scale Colonoscopy Video Dataset of Diverse Polyps", Medical Image Computing and Computer Assisted Intervention Society, 2021
Downloads last month
18

Paper for Saint-lsy/Polyp-Gen-Dataset