b1d5e7f1e16c8c78496a007e022eaf53
This model is a fine-tuned version of albert/albert-large-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.6581
- Data Size: 1.0
- Epoch Runtime: 785.6590
- Accuracy: 0.6320
- F1 Macro: 0.3872
- Rouge1: 0.6318
- Rouge2: 0.0
- Rougel: 0.6319
- Rougelsum: 0.6317
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6712 | 0 | 25.4183 | 0.6281 | 0.3892 | 0.6280 | 0.0 | 0.6281 | 0.6279 |
| 0.5291 | 1 | 11370 | 0.6753 | 0.0078 | 31.4037 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6585 | 2 | 22740 | 0.6609 | 0.0156 | 36.5149 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6613 | 3 | 34110 | 0.6689 | 0.0312 | 47.9635 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6668 | 4 | 45480 | 0.6589 | 0.0625 | 70.2682 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6593 | 5 | 56850 | 0.6591 | 0.125 | 115.9517 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6558 | 6 | 68220 | 0.6593 | 0.25 | 209.9690 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6565 | 7 | 79590 | 0.6579 | 0.5 | 407.2675 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.654 | 8.0 | 90960 | 0.6572 | 1.0 | 786.5616 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6568 | 9.0 | 102330 | 0.6564 | 1.0 | 785.2712 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6666 | 10.0 | 113700 | 0.6578 | 1.0 | 786.4610 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6563 | 11.0 | 125070 | 0.6606 | 1.0 | 786.0289 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.652 | 12.0 | 136440 | 0.6568 | 1.0 | 786.1918 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
| 0.6629 | 13.0 | 147810 | 0.6581 | 1.0 | 785.6590 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for contemmcm/b1d5e7f1e16c8c78496a007e022eaf53
Base model
albert/albert-large-v2