yelp_review_classifier

This model is a fine-tuned version of google-bert/bert-base-cased on Yelp/yelp_review_full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7121
  • Accuracy: 0.6864

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3664 0.0985 500 0.8323 0.6359
0.8124 0.1969 1000 0.7954 0.6487
0.7915 0.2954 1500 0.7846 0.6562
0.7693 0.3938 2000 0.7509 0.6699
0.7591 0.4923 2500 0.7425 0.6719
0.7456 0.5907 3000 0.7323 0.6773
0.744 0.6892 3500 0.7282 0.6806
0.7347 0.7876 4000 0.7181 0.6838
0.7277 0.8861 4500 0.7158 0.6841
0.719 0.9845 5000 0.7121 0.6864

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.7.0+gitf717b2a
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
101
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for arman1o1/yelp_review_classifier

Finetuned
(2724)
this model

Dataset used to train arman1o1/yelp_review_classifier

Evaluation results