VideoMAE_BdSLW401_20_epochs_p5_SR_10

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set: (Validation Result)

  • Loss: 0.0473
  • Accuracy: 0.9920
  • Precision: 0.9928
  • Recall: 0.9920
  • F1: 0.9920

Model description

This model can recognize 401 mostly used Bangla Sign Gloss used in this paper (https://arxiv.org/abs/2503.02360v1)

Intended uses & limitations

Use this model for fine-tuning or cross-sign language word fine-tuning purposes.

Cite: https://arxiv.org/abs/2506.04367v1

@article{shawon2025fine, title={Fine-Tuning Video Transformers for Word-Level Bangla Sign Language: A Comparative Analysis for Classification Tasks}, author={Shawon, Jubayer Ahmed Bhuiyan and Mahmud, Hasan and Hasan, Kamrul}, journal={arXiv preprint arXiv:2506.04367}, year={2025} }

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 97180
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
10.3074 0.05 4859 2.3824 0.6847 0.7288 0.6847 0.6538
1.7678 1.0500 9719 0.4062 0.9052 0.9190 0.9052 0.9014
0.63 2.05 14578 0.1821 0.9506 0.9603 0.9506 0.9492
0.5045 3.0500 19438 0.1665 0.9544 0.9614 0.9544 0.9537
0.391 4.05 24297 0.1415 0.9647 0.9704 0.9647 0.9639
0.3131 5.0500 29157 0.1286 0.9713 0.9758 0.9713 0.9704
0.2343 6.05 34016 0.1306 0.9745 0.9789 0.9745 0.9744
0.1352 7.0500 38876 0.0948 0.9772 0.9804 0.9772 0.9772
0.1432 8.05 43735 0.1018 0.9774 0.9806 0.9774 0.9774
0.0935 9.0500 48595 0.1065 0.9779 0.9801 0.9779 0.9777
0.0278 10.05 53454 0.0846 0.9850 0.9869 0.9850 0.9849
0.1197 11.0500 58314 0.1027 0.9804 0.9833 0.9804 0.9803
0.0607 12.05 63173 0.0727 0.9868 0.9881 0.9868 0.9868
0.0004 13.0500 68033 0.0760 0.9856 0.9872 0.9856 0.9856
0.0155 14.05 72892 0.0709 0.9886 0.9898 0.9886 0.9886
0.0043 15.0500 77752 0.0628 0.9888 0.9899 0.9888 0.9888
0.0 16.05 82611 0.0685 0.9875 0.9889 0.9875 0.9874
0.0002 17.0500 87471 0.0537 0.9904 0.9914 0.9904 0.9904
0.0013 18.05 92330 0.0481 0.9920 0.9929 0.9920 0.9920
0.0 19.0499 97180 0.0473 0.9920 0.9928 0.9920 0.9920

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
6
Safetensors
Model size
86.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Shawon16/VideoMAE_BdSLW401_20_epochs_p5_SR_10

Finetuned
(276)
this model

Space using Shawon16/VideoMAE_BdSLW401_20_epochs_p5_SR_10 1

Evaluation results