HyperCLOVAX-SEED-Text-Instruct-0.5B GGUF Models
Model Generation Details
This model was generated using llama.cpp at commit 5e7d95e2.
Choosing the Right Model Format
Selecting the correct model format depends on your hardware capabilities and memory constraints.
BF16 (Brain Float 16) โ Use if BF16 acceleration is available
- A 16-bit floating-point format designed for faster computation while retaining good precision.
- Provides similar dynamic range as FP32 but with lower memory usage.
- Recommended if your hardware supports BF16 acceleration (check your device's specs).
- Ideal for high-performance inference with reduced memory footprint compared to FP32.
๐ Use BF16 if:
โ Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
โ You want higher precision while saving memory.
โ You plan to requantize the model into another format.
๐ Avoid BF16 if:
โ Your hardware does not support BF16 (it may fall back to FP32 and run slower).
โ You need compatibility with older devices that lack BF16 optimization.
F16 (Float 16) โ More widely supported than BF16
- A 16-bit floating-point high precision but with less of range of values than BF16.
- Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
๐ Use F16 if:
โ Your hardware supports FP16 but not BF16.
โ You need a balance between speed, memory usage, and accuracy.
โ You are running on a GPU or another device optimized for FP16 computations.
๐ Avoid F16 if:
โ Your device lacks native FP16 support (it may run slower than expected).
โ You have memory limitations.
Quantized Models (Q4_K, Q6_K, Q8, etc.) โ For CPU & Low-VRAM Inference
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- Lower-bit models (Q4_K) โ Best for minimal memory usage, may have lower precision.
- Higher-bit models (Q6_K, Q8_0) โ Better accuracy, requires more memory.
๐ Use Quantized Models if:
โ You are running inference on a CPU and need an optimized model.
โ Your device has low VRAM and cannot load full-precision models.
โ You want to reduce memory footprint while keeping reasonable accuracy.
๐ Avoid Quantized Models if:
โ You need maximum accuracy (full-precision models are better for this).
โ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)
These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.
IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.
- Use case: Best for ultra-low-memory devices where even Q4_K is too large.
- Trade-off: Lower accuracy compared to higher-bit quantizations.
IQ3_S: Small block size for maximum memory efficiency.
- Use case: Best for low-memory devices where IQ3_XS is too aggressive.
IQ3_M: Medium block size for better accuracy than IQ3_S.
- Use case: Suitable for low-memory devices where IQ3_S is too limiting.
Q4_K: 4-bit quantization with block-wise optimization for better accuracy.
- Use case: Best for low-memory devices where Q6_K is too large.
Q4_0: Pure 4-bit quantization, optimized for ARM devices.
- Use case: Best for ARM-based devices or low-memory environments.
Summary Table: Model Format Selection
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|---|---|---|---|---|
| BF16 | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| F16 | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
| Q4_K | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| Q6_K | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| Q8_0 | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| IQ3_XS | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| Q4_0 | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
Included Files & Details
HyperCLOVAX-SEED-Text-Instruct-0.5B-bf16.gguf
- Model weights preserved in BF16.
- Use this if you want to requantize the model into a different format.
- Best if your device supports BF16 acceleration.
HyperCLOVAX-SEED-Text-Instruct-0.5B-f16.gguf
- Model weights stored in F16.
- Use if your device supports FP16, especially if BF16 is not available.
HyperCLOVAX-SEED-Text-Instruct-0.5B-bf16-q8_0.gguf
- Output & embeddings remain in BF16.
- All other layers quantized to Q8_0.
- Use if your device supports BF16 and you want a quantized version.
HyperCLOVAX-SEED-Text-Instruct-0.5B-f16-q8_0.gguf
- Output & embeddings remain in F16.
- All other layers quantized to Q8_0.
HyperCLOVAX-SEED-Text-Instruct-0.5B-q4_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q4_K.
- Good for CPU inference with limited memory.
HyperCLOVAX-SEED-Text-Instruct-0.5B-q4_k_s.gguf
- Smallest Q4_K variant, using less memory at the cost of accuracy.
- Best for very low-memory setups.
HyperCLOVAX-SEED-Text-Instruct-0.5B-q6_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q6_K .
HyperCLOVAX-SEED-Text-Instruct-0.5B-q8_0.gguf
- Fully Q8 quantized model for better accuracy.
- Requires more memory but offers higher precision.
HyperCLOVAX-SEED-Text-Instruct-0.5B-iq3_xs.gguf
- IQ3_XS quantization, optimized for extreme memory efficiency.
- Best for ultra-low-memory devices.
HyperCLOVAX-SEED-Text-Instruct-0.5B-iq3_m.gguf
- IQ3_M quantization, offering a medium block size for better accuracy.
- Suitable for low-memory devices.
HyperCLOVAX-SEED-Text-Instruct-0.5B-q4_0.gguf
- Pure Q4_0 quantization, optimized for ARM devices.
- Best for low-memory environments.
- Prefer IQ4_NL for better accuracy.
๐ If you find these models useful
โค Please click "Like" if you find this useful!
Help me test my AI-Powered Network Monitor Assistant with quantum-ready security checks:
๐ Quantum Network Monitor
๐ฌ How to test:
Choose an AI assistant type:
TurboLLM(GPT-4o-mini)HugLLM(Hugginface Open-source)TestLLM(Experimental CPU-only)
What Iโm Testing
Iโm pushing the limits of small open-source models for AI network monitoring, specifically:
- Function calling against live network services
- How small can a model go while still handling:
- Automated Nmap scans
- Quantum-readiness checks
- Network Monitoring tasks
๐ก TestLLM โ Current experimental model (llama.cpp on 2 CPU threads):
- โ Zero-configuration setup
- โณ 30s load time (slow inference but no API costs)
- ๐ง Help wanted! If youโre into edge-device AI, letโs collaborate!
Other Assistants
๐ข TurboLLM โ Uses gpt-4o-mini for:
- Create custom cmd processors to run .net code on Quantum Network Monitor Agents
- Real-time network diagnostics and monitoring
- Security Audits
- Penetration testing (Nmap/Metasploit)
๐ต HugLLM โ Latest Open-source models:
- ๐ Runs on Hugging Face Inference API
๐ก Example commands to you could test:
"Give me info on my websites SSL certificate""Check if my server is using quantum safe encyption for communication""Run a comprehensive security audit on my server"- '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIโall out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.
If you appreciate the work, please consider buying me a coffee โ. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! ๐
Overview
HyperCLOVAX-SEED-Text-Instruct-0.5B is a Text-to-Text model with instruction-following capabilities that excels in understanding Korean language and culture. Compared to external competitors of similar scale, it demonstrates improved mathematical performance and a substantial enhancement in Korean language capability. The HyperCLOVAX-SEED-Text-Instruct-0.5B is currently the smallest model released by the HyperCLOVAX, representing a lightweight solution suitable for deployment in resourceโconstrained environments such as edge devices. It supports a maximum context length of 4K and functions as a versatile small model applicable to a wide range of tasks. The total cost of a single training run for HyperCLOVAX-SEED-Text-Instruct-0.5B was 4.358K A100 GPU hours (approximately USD 6.537K), which is 39 times lower than the cost of training the QWEN2.5โ0.5Bโinstruct model.
Basic Information
- Architecture: Transformerโbased (Dense Model)
- Parameters: 0.57 B (total); 0.45 B (excluding token embeddings, tied embeddings)
- Input/Output Format: Text / Text
- Maximum Context Length: 4 K tokens
- Knowledge Cutoff Date: Trained on data up to January 2025
Training and Data
The training dataset for HyperCLOVAX-SEED-Text-Instruct-0.5B consists of diverse sources, including the highโquality data accumulated during the development of HyperCLOVAX-SEED-Text-Instruct-0.5B. Training was conducted in three main stages:
- Pretraining: Knowledge acquisition using highโquality data and a highโperformance pretrained model.
- Rejection Sampling FineโTuning (RFT): Enhancement of multiโdomain knowledge and complex reasoning capabilities.
- Supervised FineโTuning (SFT): Improvement of instructionโfollowing proficiency.
Training Cost
HyperCLOVAX-SEED-Text-Instruct-0.5B leveraged HyperCLOVA Xโs lightweight training process and highโquality data to achieve significantly lower training costs compared to industryโleading competitors of similar scale. Excluding the SFT stage, a single pretraining run incurred:
| Pretraining Cost Category | HyperCLOVAX-SEED-Text-Instruct-0.5B | QWEN2.5โ0.5Bโinstruct |
|---|---|---|
| A100 GPU Hours | 4.358 K | 169.257 K |
| Cost (USD) | 6.537 K | 253.886 K |
This represents approximately a 39ร reduction in pretraining cost relative to QWEN2.5โ0.5B-instruct.
Benchmarks
| Model | KMMLU (5-shot, acc) | HAE-RAE (5-shot, acc) | CLiCK (5-shot, acc) | KoBEST (5-shot, acc) |
|---|---|---|---|---|
| HyperCLOVAX-SEED-Text-Base-0.5B | 0.4181 | 0.6370 | 0.5373 | 0.6963 |
| HyperCLOVAX-SEED-Text-Instruct-0.5B | 0.3815 | 0.5619 | 0.4446 | 0.6299 |
| QWEN2.5-0.5B-instruct | 0.2968 | 0.3428 | 0.3805 | 0.5025 |
HuggingFace Usage Example
Python Code
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B").to(device="cuda")
tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B")
chat = [
{"role": "tool_list", "content": ""},
{"role": "system", "content": "- AI ์ธ์ด๋ชจ๋ธ์ ์ด๋ฆ์ \"CLOVA X\" ์ด๋ฉฐ ๋ค์ด๋ฒ์์ ๋ง๋ค์๋ค.\n- ์ค๋์ 2025๋
04์ 24์ผ(๋ชฉ)์ด๋ค."},
{"role": "user", "content": "์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์๊ณผ ์์์ญํ์ ๊ด๊ณ๋ฅผ ์ต๋ํ ์์ธํ ์๋ ค์ค."},
]
inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = inputs.to(device="cuda")
output_ids = model.generate(**inputs, max_length=1024, stop_strings=["<|endofturn|>", "<|stop|>"], repetition_penalty=1.2, tokenizer=tokenizer)
print(tokenizer.batch_decode(output_ids))
Result
['<|im_start|>tool_list\n<|im_end|>\n<|im_start|>system\n- AI ์ธ์ด๋ชจ๋ธ์ ์ด๋ฆ์ "CLOVA X" ์ด๋ฉฐ ๋ค์ด๋ฒ์์ ๋ง๋ค์๋ค.\n- ์ค๋์ 2025๋
04์ 24์ผ(๋ชฉ)์ด๋ค.<|im_end|>\n<|im_start|>user\n์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์๊ณผ ์์์ญํ์ ๊ด๊ณ๋ฅผ ์ต๋ํ ์์ธํ ์๋ ค์ค.<|im_end|>\n<|im_start|>assistant\n์์์ญํ์ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ํตํด ๋ฌผ์ง๊ณผ ์๋์ง, ๊ณต๊ฐ ๋ฑ์ ํ์์ ์ค๋ช
ํฉ๋๋ค.\n\n**1. ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์**\n\n์๋ขฐ๋ฉ๊ฑฐ๋ ํ๋ํจ์๋ฅผ ์ด์ฉํ์ฌ ์
์์ ์์น์ ์ด๋๋์ ๊ณ์ฐํ ์ ์๋ค๊ณ ์ฃผ์ฅํ์ต๋๋ค. ์ด๋ฅผ ์ํด ๋ค์๊ณผ ๊ฐ์ ์์ผ๋ก ํํ๋ฉ๋๋ค:\n\n$$\\frac{\\partial \\psi}{\\partial t} = iH \\nabla^2 \\psi + V(x)\\psi $$\n\n์ฌ๊ธฐ์ $\\psi$๋ ํ๋ํจ์์ด๊ณ $i$๋ ํ์ ๋จ์์
๋๋ค. ์ฌ๊ธฐ์ $t$๋ ์๊ฐ, $x$๋ ๊ณต๊ฐ ์ขํ์ด๋ฉฐ, $H$๋ ํด๋ฐํด ์์๋ก ์์คํ
์ ์๋์ง๋ฅผ ๋ํ๋
๋๋ค. ๋ํ $V(x)$๋ ์ธ๋ถ ํ์ด๋ ์ฅ๋ฒฝ์ ์ํด ์ํฅ์ ๋ฐ๋ ๋ถ๋ถ์ ๋ํ๋ด๋ ํจ์๋ก, ์ผ๋ฐ์ ์ผ๋ก ์ ์์ฅ์ ์ฌ์ฉํฉ๋๋ค.\n\n**2. ์์์ญํ๊ณผ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ๊ด๊ณ**\n\n์์์ญํ์์๋ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ด ๋งค์ฐ ์ค์ํ ์ญํ ์ ํฉ๋๋ค. ์ด๋ ๋ชจ๋ ๋ฌผ๋ฆฌ์ ์์คํ
์ด ๋ถํ์ ์ฑ ์๋ฆฌ์ ๋ฐ๋ผ ํ๋์ ํ๋ฉฐ, ์ด๋ฌํ ์์คํ
๋ค์ ํ๋ฅ ์ ์ผ๋ก ์ํ๋ฅผ ๊ฐ์ง ์๋ฐ์ ์๊ธฐ ๋๋ฌธ์
๋๋ค. ๋ฐ๋ผ์ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ์์์ญํ์ ์ํ์ ์ผ๋ก ๋ชจ๋ธ๋งํ๋ ํต์ฌ์ ์ธ ๋๊ตฌ ์ค ํ๋์
๋๋ค.\n\n์๋ฅผ ๋ค์ด, ์์ํต ๋ด์ ์ ์๋ค์ ์ํ๋ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ์ํด ๊ฒฐ์ ๋๋ฉฐ, ์ด๋ ๋ฌผ๋ฆฌํ์ ๋ฒ์น์ ๋ฐ๋ฅด๋ ๊ฒ์ผ๋ก ๋ณด์
๋๋ค. ๋ํ, ๊ด์ ํจ๊ณผ์์๋ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ๋น์ด ๋ฌผ์ง ๋ด์์ ์ด๋ป๊ฒ ํก์๋๊ณ ๋ฐ์ฌ๋๋์ง๋ฅผ ์์ธกํ๋๋ฐ ์ฌ์ฉ๋ฉ๋๋ค.\n\n**3. ์์ฉ ๋ถ์ผ**\n\n์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ๋ค์ํ ๋ถ์ผ์์ ํ์ฉ๋๊ณ ์์ต๋๋ค. ์๋ฅผ ๋ค๋ฉด, ๋ฐ๋์ฒด ๊ธฐ์ ์์์ ํธ๋์ง์คํฐ ์ค๊ณ, ํต๋ฌผ๋ฆฌํ์์์ ๋ฐฉ์ฌ์ฑ ๋ถ๊ดด ์ฐ๊ตฌ ๋ฑ์ด ์์ผ๋ฉฐ, ์ด๋ ๋ชจ๋ ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ๊ธฐ๋ฐ์ผ๋ก ํ ์ด๋ก ์ ๊ธฐ๋ฐ ์์์ ์ด๋ฃจ์ด์ง๋๋ค.\n\n๋ํ, ํ๋ ๊ณผํ ๊ธฐ์ ์ ๋ฐ์ ์๋ ํฐ ๊ธฐ์ฌ๋ฅผ ํ๊ณ ์๋๋ฐ, ํนํ ์ธ๊ณต์ง๋ฅ(AI), ์ปดํจํฐ ์๋ฎฌ๋ ์ด์
๋ฑ์์ ๋ณต์กํ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๊ณ ์๋ก์ด ์ง์์ ์ฐฝ์ถํ๊ธฐ ์ํ ๊ธฐ์ด๊ฐ ๋๊ณ ์์ต๋๋ค.\n\n๊ฒฐ๋ก ์ ์ผ๋ก, ์๋ขฐ๋ฉ๊ฑฐ ๋ฐฉ์ ์์ ์์์ญํ์ ๊ธฐ๋ณธ ๊ฐ๋
๋ค์ ์ดํดํ๊ณ ํด์ํ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ๋ก์ ๋ง์ ํ์ ์ ์ด๊ณ ์ค์ฉ์ ์ธ ๊ธฐ์ ์ ๊ฐ๋ฅํ๊ฒ ํ์ต๋๋ค. ์ด๋ ์์์ญํ์ ์ค์์ฑ์ ๋ณด์ฌ์ฃผ๋ ๋ํ์ ์ธ ์์๋ผ๊ณ ํ ์ ์์ต๋๋ค.<|im_end|><|endofturn|>']
- Downloads last month
- 58
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
