π§ Mind-Gemma (CBT Counseling Specialist)
π Model Details
Model Description
Mind-Gemmaλ ꡬκΈμ κ²½λ κ±°λ μΈμ΄ λͺ¨λΈμΈ gemma-3-4b-itλ₯Ό κΈ°λ°μΌλ‘, CBT(μΈμ§νλμΉλ£) κΈ°λ²μ μνν μ μλλ‘ νΉν νμ΅(Fine-tuning)λ νκ΅μ΄ μ¬λ¦¬ μλ΄ AI λͺ¨λΈμ
λλ€.
κΈ°μ‘΄μ LLMμ΄ λ¨μν κΈ°κ³μ μΈ μλ‘λ₯Ό 건λ€λ κ²κ³Ό λ¬λ¦¬, Mind-Gemmaλ λ΄λ΄μμ λ°νμμ μΈμ§μ μ곑(Cognitive Distortion) μ ν¬μ°©νκ³ , μν¬λΌν μ€μ μ§λ¬Έ(Socratic Questioning) μ ν΅ν΄ λ΄λ΄μκ° μ€μ€λ‘ ν©λ¦¬μ μΈ μ¬κ³ λ₯Ό λμΆνλλ‘ μ λν©λλ€.
μ΄ λͺ¨λΈμ Saforiμ 'λ§μμΌκΈ°(Mind Diary) κΈ°λ°μ CBT μλ΄ μ±λ΄(λλμ΄)' μλΉμ€μ ν΅μ¬ μλ΄ μμ§μΌλ‘ κ°λ°λμμ΅λλ€.
- Developed by: Kong Yoonseo (0xMori) @ Safori
- Model type: Causal Language Model (QLoRA Fine-tuned)
- Language(s): Korean (νκ΅μ΄)
- License: Gemma Terms of Use
- Finetuned from model:
google/gemma-3-4b-it
Model Sources
- Repository: https://huggingface.co/0xMori/gemma-3-safori-cbt-v1
- Service Github: [μλΉμ€ Github(https://github.com/safori-team)]
π― Uses
Direct Use
μ΄ λͺ¨λΈμ λ€μκ³Ό κ°μ μν©μμ μ΅μ μ μ±λ₯μ λ°νν©λλ€:
- μ¬λ¦¬ μλ΄ μ±λ΄: μ°μΈ, λΆμ, μ€νΈλ μ€λ₯Ό νΈμνλ μ¬μ©μμμ 1:1 λν.
- κ°μ λΆμ λ° μΌμ΄: μ¬μ©μμ μΌκΈ°λ ν μ€νΈμμ κ°μ μ μΆμΆνκ³ μ μ ν νΌλλ°± μ 곡.
- CBT νλ ¨: μΈμ§νλμΉλ£ κΈ°λ²μ μ μ©ν λν μλλ¦¬μ€ μμ±.
Out-of-Scope Use (μ¬μ© μ ν)
- μλ£μ μ§λ¨: μ΄ λͺ¨λΈμ μμ¬κ° μλλ©°, μ μ μ§νμ μ§λ¨νκ±°λ μ½λ¬Όμ μ²λ°©ν μ μμ΅λλ€.
- μκΈ μκΈ° μν©: μμ΄ μν, μν΄ λ± μ¦κ°μ μΈ κ°μ μ΄ νμν μκΈ μν©μμλ μ¬μ©ν μ μμΌλ©°, μ λ¬Έ κΈ°κ΄ μλ΄κ° νμν©λλ€.
π» How to Get Started
μλ μ½λλ₯Ό ν΅ν΄ Mind-Gemmaμ λνλ₯Ό μμν μ μμ΅λλ€.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "0xMori/gemma-3-safori-cbt-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16
)
messages = [
{"role": "user", "content": "μ¬λλ€μ΄ λ€ λλ₯Ό μ«μ΄νλ κ² κ°μμ λͺ¨μμ λκ°κΈ°κ° λλ €μ."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
outputs = model.generate(
input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9
)
print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
βοΈ Training Details
Training Data
- Source1: AI-Hub ('μ°λμ€ λν μ€ν¬λ¦½νΈ')[https://aihub.or.kr/aihubdata/data/view.do?dataSetSn=267]
- Source2: AI-Hub ('κ°μ± λν λ§λμΉ')[https://aihub.or.kr/aihubdata/data/view.do?dataSetSn=86]
- Preprocessing: - μλ΄μ¬μ λ΅λ³μ CBT κΈ°λ²(κ³΅κ° β λΆμ β λ°λ° μ§λ¬Έ)μ λ§μΆ° μ¬κ΅¬μ±.
- JSONL ν¬λ§· λ³ν λ° gemma Chat Template μ μ©.
Training Procedure
- Technique: QLoRA (Quantized Low-Rank Adaptation)
- Hardware: NVIDIA T4 GPU (Google Colab Environment)
- Frameworks: transformers, peft, trl, bitsandbytes
- Hyperparameters
- Learning Rate: 2e-4
- Batch Size: 2 (Gradient Accumulation: 4)
- Optimizer: paged_adamw_8bit
- Quantization: 4-bit (NF4)
- LoRA Rank (r): 16
- LoRA Alpha: 16
- Downloads last month
- 3
Model tree for 0xMori/gemma-3-safori-cbt-merged
Base model
google/gemma-3-4b-pt