🧠 Mind-Gemma (CBT Counseling Specialist)

Model Architecture Task Technique

πŸ“– Model Details

Model Description

Mind-GemmaλŠ” κ΅¬κΈ€μ˜ κ²½λŸ‰ κ±°λŒ€ μ–Έμ–΄ λͺ¨λΈμΈ gemma-3-4b-itλ₯Ό 기반으둜, CBT(μΈμ§€ν–‰λ™μΉ˜λ£Œ) 기법을 μˆ˜ν–‰ν•  수 μžˆλ„λ‘ νŠΉν™” ν•™μŠ΅(Fine-tuning)된 ν•œκ΅­μ–΄ 심리 상담 AI λͺ¨λΈμž…λ‹ˆλ‹€.

기쑴의 LLM이 λ‹¨μˆœνžˆ 기계적인 μœ„λ‘œλ₯Ό κ±΄λ„€λŠ” 것과 달리, Mind-GemmaλŠ” λ‚΄λ‹΄μžμ˜ λ°œν™”μ—μ„œ 인지적 μ™œκ³‘(Cognitive Distortion) 을 ν¬μ°©ν•˜κ³ , μ†Œν¬λΌν…ŒμŠ€μ‹ 질문(Socratic Questioning) 을 톡해 λ‚΄λ‹΄μžκ°€ 슀슀둜 합리적인 사고λ₯Ό λ„μΆœν•˜λ„λ‘ μœ λ„ν•©λ‹ˆλ‹€.

이 λͺ¨λΈμ€ Safori의 '마음일기(Mind Diary) 기반의 CBT 상담 챗봇(λ„λž€μ΄)' μ„œλΉ„μŠ€μ˜ 핡심 상담 μ—”μ§„μœΌλ‘œ κ°œλ°œλ˜μ—ˆμŠ΅λ‹ˆλ‹€.

  • Developed by: Kong Yoonseo (0xMori) @ Safori
  • Model type: Causal Language Model (QLoRA Fine-tuned)
  • Language(s): Korean (ν•œκ΅­μ–΄)
  • License: Gemma Terms of Use
  • Finetuned from model: google/gemma-3-4b-it

Model Sources

🎯 Uses

Direct Use

이 λͺ¨λΈμ€ λ‹€μŒκ³Ό 같은 μƒν™©μ—μ„œ 졜적의 μ„±λŠ₯을 λ°œνœ˜ν•©λ‹ˆλ‹€:

  • 심리 상담 챗봇: 우울, λΆˆμ•ˆ, 슀트레슀λ₯Ό ν˜Έμ†Œν•˜λŠ” μ‚¬μš©μžμ™€μ˜ 1:1 λŒ€ν™”.
  • 감정 뢄석 및 μΌ€μ–΄: μ‚¬μš©μžμ˜ μΌκΈ°λ‚˜ ν…μŠ€νŠΈμ—μ„œ 감정을 μΆ”μΆœν•˜κ³  μ μ ˆν•œ ν”Όλ“œλ°± 제곡.
  • CBT ν›ˆλ ¨: μΈμ§€ν–‰λ™μΉ˜λ£Œ 기법을 μ μš©ν•œ λŒ€ν™” μ‹œλ‚˜λ¦¬μ˜€ 생성.

Out-of-Scope Use (μ‚¬μš© μ œν•œ)

  • 의료적 진단: 이 λͺ¨λΈμ€ μ˜μ‚¬κ°€ μ•„λ‹ˆλ©°, μ •μ‹ μ§ˆν™˜μ„ μ§„λ‹¨ν•˜κ±°λ‚˜ 약물을 μ²˜λ°©ν•  수 μ—†μŠ΅λ‹ˆλ‹€.
  • 응급 μœ„κΈ° 상황: μžμ‚΄ μœ„ν—˜, μžν•΄ λ“± 즉각적인 κ°œμž…μ΄ ν•„μš”ν•œ 응급 μƒν™©μ—μ„œλŠ” μ‚¬μš©ν•  수 μ—†μœΌλ©°, μ „λ¬Έ κΈ°κ΄€ μ•ˆλ‚΄κ°€ ν•„μš”ν•©λ‹ˆλ‹€.

πŸ’» How to Get Started

μ•„λž˜ μ½”λ“œλ₯Ό 톡해 Mind-Gemma와 λŒ€ν™”λ₯Ό μ‹œμž‘ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "0xMori/gemma-3-safori-cbt-v1"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.float16
)

messages = [
    {"role": "user", "content": "μ‚¬λžŒλ“€μ΄ λ‹€ λ‚˜λ₯Ό μ‹«μ–΄ν•˜λŠ” 것 κ°™μ•„μ„œ λͺ¨μž„에 λ‚˜κ°€κΈ°κ°€ λ‘λ €μ›Œ."},
]

input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")

outputs = model.generate(
    input_ids,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.9
)

print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))

βš™οΈ Training Details

Training Data

Training Procedure

  • Technique: QLoRA (Quantized Low-Rank Adaptation)
  • Hardware: NVIDIA T4 GPU (Google Colab Environment)
  • Frameworks: transformers, peft, trl, bitsandbytes
  • Hyperparameters
  • Learning Rate: 2e-4
  • Batch Size: 2 (Gradient Accumulation: 4)
  • Optimizer: paged_adamw_8bit
  • Quantization: 4-bit (NF4)
  • LoRA Rank (r): 16
  • LoRA Alpha: 16
Downloads last month
3
Safetensors
Model size
4B params
Tensor type
F16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for 0xMori/gemma-3-safori-cbt-merged

Finetuned
(1)
this model