new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning

Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.

  • 11 authors
·
Sep 14, 2025 3

EtCon: Edit-then-Consolidate for Reliable Knowledge Editing

Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, proving effective for making selective edits. However, a significant gap exists between their performance in controlled, teacher-forcing evaluations and their real-world effectiveness in lifelong learning scenarios, which greatly limits their practical applicability. This work's empirical analysis reveals two recurring issues associated with this gap: (1) Most traditional methods lead the edited model to overfit to the new fact, thereby degrading pre-trained capabilities; (2) There is a critical absence of a knowledge consolidation stage, leaving new facts insufficiently integrated into LLMs' inference-time behavior under autoregressive generation, thereby leading to a mismatch between parametric knowledge and actual generation behavior. To this end, we propose Edit-then-Consolidate, a novel knowledge editing paradigm that aims to bridge the gap between theoretical knowledge editing methods and their real-world applicability. Specifically, (1) our framework mitigates overfitting via Targeted Proximal Supervised Fine-Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy drift; (2) Then, a consolidation stage using Group Relative Policy Optimization (GRPO) aligns the edited knowledge with CoT-based inference policy by optimizing trajectory-level behavior under comprehensive reward signals. Extensive experiments demonstrate our framework consistently improves editing reliability and generalization under real-world evaluations, while better preserving locality and pre-trained capabilities.

  • 8 authors
·
Dec 4, 2025 2

Step-GUI Technical Report

Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.

stepfun-ai StepFun
·
Dec 17, 2025 3

Universal Reasoner: A Single, Composable Plug-and-Play Reasoner for Frozen LLMs

Large Language Models (LLMs) have demonstrated remarkable general capabilities, but enhancing skills such as reasoning often demands substantial computational resources and may compromise their generalization. While Parameter-Efficient Fine-Tuning (PEFT) methods offer a more resource-conscious alternative, they typically requires retraining for each LLM backbone due to architectural dependencies. To address these challenges, here we propose Universal Reasoner (UniR) - a single, lightweight, composable, and plug-and-play reasoning module that can be used with any frozen LLM to endow it with specialized reasoning capabilities. Specifically, UniR decomposes the reward into a standalone reasoning module that is trained independently using predefined rewards, effectively translating trajectory-level signals into token-level guidance. Once trained, UniR can be combined with any frozen LLM at inference time by simply adding its output logits to those of the LLM backbone. This additive structure naturally enables modular composition: multiple UniR modules trained for different tasks can be jointly applied by summing their logits, enabling complex reasoning via composition. Experimental results on mathematical reasoning and machine translation tasks show that UniR significantly outperforms existing baseline fine-tuning methods using the Llama3.2 model. Furthermore, UniR demonstrates strong weak-to-strong generalization: reasoning modules trained on smaller models effectively guide much larger LLMs. This makes UniR a cost-efficient, adaptable, and robust solution for enhancing reasoning in LLMs without compromising their core capabilities. Code is open-sourced at https://github.com/hangeol/UniR

  • 5 authors
·
May 25, 2025 2

R$^3$L: Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification

Reinforcement learning drives recent advances in LLM reasoning and agentic capabilities, yet current approaches struggle with both exploration and exploitation. Exploration suffers from low success rates on difficult tasks and high costs of repeated rollouts from scratch. Exploitation suffers from coarse credit assignment and training instability: Trajectory-level rewards penalize valid prefixes for later errors, and failure-dominated groups overwhelm the few positive signals, leaving optimization without constructive direction. To this end, we propose R^3L, Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification. To synthesize high-quality trajectories, R^3L shifts from stochastic sampling to active synthesis via reflect-then-retry, leveraging language feedback to diagnose errors, transform failed attempts into successful ones, and reduce rollout costs by restarting from identified failure points. With errors diagnosed and localized, Pivotal Credit Assignment updates only the diverging suffix where contrastive signals exist, excluding the shared prefix from gradient update. Since failures dominate on difficult tasks and reflect-then-retry produces off-policy data, risking training instability, Positive Amplification upweights successful trajectories to ensure positive signals guide the optimization process. Experiments on agentic and reasoning tasks demonstrate 5\% to 52\% relative improvements over baselines while maintaining training stability. Our code is released at https://github.com/shiweijiezero/R3L.

  • 8 authors
·
Jan 7

Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards

Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.

  • 5 authors
·
Oct 28, 2025

Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models

Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving 6-12 percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving 7-11 percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.

  • 5 authors
·
May 29, 2025 2