Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties
In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p.
Delving into Latent Spectral Biasing of Video VAEs for Superior Diffusability
Latent diffusion models pair VAEs with diffusion backbones, and the structure of VAE latents strongly influences the difficulty of diffusion training. However, existing video VAEs typically focus on reconstruction fidelity, overlooking latent structure. We present a statistical analysis of video VAE latent spaces and identify two spectral properties essential for diffusion training: a spatio-temporal frequency spectrum biased toward low frequencies, and a channel-wise eigenspectrum dominated by a few modes. To induce these properties, we propose two lightweight, backbone-agnostic regularizers: Local Correlation Regularization and Latent Masked Reconstruction. Experiments show that our Spectral-Structured VAE (SSVAE) achieves a 3times speedup in text-to-video generation convergence and a 10\% gain in video reward, outperforming strong open-source VAEs. The code is available at https://github.com/zai-org/SSVAE.
Rethinking Spectral Augmentation for Contrast-based Graph Self-Supervised Learning
The recent surge in contrast-based graph self-supervised learning has prominently featured an intensified exploration of spectral cues. Spectral augmentation, which involves modifying a graph's spectral properties such as eigenvalues or eigenvectors, is widely believed to enhance model performance. However, an intriguing paradox emerges, as methods grounded in seemingly conflicting assumptions regarding the spectral domain demonstrate notable enhancements in learning performance. Through extensive empirical studies, we find that simple edge perturbations - random edge dropping for node-level and random edge adding for graph-level self-supervised learning - consistently yield comparable or superior performance while being significantly more computationally efficient. This suggests that the computational overhead of sophisticated spectral augmentations may not justify their practical benefits. Our theoretical analysis of the InfoNCE loss bounds for shallow GNNs further supports this observation. The proposed insights represent a significant leap forward in the field, potentially refining the understanding and implementation of graph self-supervised learning.
Reparameterized LLM Training via Orthogonal Equivalence Transformation
While large language models (LLMs) are driving the rapid advancement of artificial intelligence, effectively and reliably training these large models remains one of the field's most significant challenges. To address this challenge, we propose POET, a novel reParameterized training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons. Specifically, POET reparameterizes each neuron with two learnable orthogonal matrices and a fixed random weight matrix. Because of its provable preservation of spectral properties of weight matrices, POET can stably optimize the objective function with improved generalization. We further develop efficient approximations that make POET flexible and scalable for training large-scale neural networks. Extensive experiments validate the effectiveness and scalability of POET in training LLMs.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Topological Point Cloud Clustering
We present Topological Point Cloud Clustering (TPCC), a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features. TPCC synthesizes desirable features from spectral clustering and topological data analysis and is based on considering the spectral properties of a simplicial complex associated to the considered point cloud. As it is based on considering sparse eigenvector computations, TPCC is similarly easy to interpret and implement as spectral clustering. However, by focusing not just on a single matrix associated to a graph created from the point cloud data, but on a whole set of Hodge-Laplacians associated to an appropriately constructed simplicial complex, we can leverage a far richer set of topological features to characterize the data points within the point cloud and benefit from the relative robustness of topological techniques against noise. We test the performance of TPCC on both synthetic and real-world data and compare it with classical spectral clustering.
Rayleigh Quotient Graph Neural Networks for Graph-level Anomaly Detection
Graph-level anomaly detection has gained significant attention as it finds applications in various domains, such as cancer diagnosis and enzyme prediction. However, existing methods fail to capture the spectral properties of graph anomalies, resulting in unexplainable framework design and unsatisfying performance. In this paper, we re-investigate the spectral differences between anomalous and normal graphs. Our main observation shows a significant disparity in the accumulated spectral energy between these two classes. Moreover, we prove that the accumulated spectral energy of the graph signal can be represented by its Rayleigh Quotient, indicating that the Rayleigh Quotient is a driving factor behind the anomalous properties of graphs. Motivated by this, we propose Rayleigh Quotient Graph Neural Network (RQGNN), the first spectral GNN that explores the inherent spectral features of anomalous graphs for graph-level anomaly detection. Specifically, we introduce a novel framework with two components: the Rayleigh Quotient learning component (RQL) and Chebyshev Wavelet GNN with RQ-pooling (CWGNN-RQ). RQL explicitly captures the Rayleigh Quotient of graphs and CWGNN-RQ implicitly explores the spectral space of graphs. Extensive experiments on 10 real-world datasets show that RQGNN outperforms the best rival by 6.74% in Macro-F1 score and 1.44% in AUC, demonstrating the effectiveness of our framework. Our code is available at https://github.com/xydong127/RQGNN.
Accelerating Transformers with Spectrum-Preserving Token Merging
Increasing the throughput of the Transformer architecture, a foundational component used in numerous state-of-the-art models for vision and language tasks (e.g., GPT, LLaVa), is an important problem in machine learning. One recent and effective strategy is to merge token representations within Transformer models, aiming to reduce computational and memory requirements while maintaining accuracy. Prior works have proposed algorithms based on Bipartite Soft Matching (BSM), which divides tokens into distinct sets and merges the top k similar tokens. However, these methods have significant drawbacks, such as sensitivity to token-splitting strategies and damage to informative tokens in later layers. This paper presents a novel paradigm called PiToMe, which prioritizes the preservation of informative tokens using an additional metric termed the energy score. This score identifies large clusters of similar tokens as high-energy, indicating potential candidates for merging, while smaller (unique and isolated) clusters are considered as low-energy and preserved. Experimental findings demonstrate that PiToMe saved from 40-60\% FLOPs of the base models while exhibiting superior off-the-shelf performance on image classification (0.5\% average performance drop of ViT-MAE-H compared to 2.6\% as baselines), image-text retrieval (0.3\% average performance drop of CLIP on Flickr30k compared to 4.5\% as others), and analogously in visual questions answering with LLaVa-7B. Furthermore, PiToMe is theoretically shown to preserve intrinsic spectral properties of the original token space under mild conditions
How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
Cross-Camera Convolutional Color Constancy
We present "Cross-Camera Convolutional Color Constancy" (C5), a learning-based method, trained on images from multiple cameras, that accurately estimates a scene's illuminant color from raw images captured by a new camera previously unseen during training. C5 is a hypernetwork-like extension of the convolutional color constancy (CCC) approach: C5 learns to generate the weights of a CCC model that is then evaluated on the input image, with the CCC weights dynamically adapted to different input content. Unlike prior cross-camera color constancy models, which are usually designed to be agnostic to the spectral properties of test-set images from unobserved cameras, C5 approaches this problem through the lens of transductive inference: additional unlabeled images are provided as input to the model at test time, which allows the model to calibrate itself to the spectral properties of the test-set camera during inference. C5 achieves state-of-the-art accuracy for cross-camera color constancy on several datasets, is fast to evaluate (~7 and ~90 ms per image on a GPU or CPU, respectively), and requires little memory (~2 MB), and thus is a practical solution to the problem of calibration-free automatic white balance for mobile photography.
MEG-GPT: A transformer-based foundation model for magnetoencephalography data
Modelling the complex spatiotemporal patterns of large-scale brain dynamics is crucial for neuroscience, but traditional methods fail to capture the rich structure in modalities such as magnetoencephalography (MEG). Recent advances in deep learning have enabled significant progress in other domains, such as language and vision, by using foundation models at scale. Here, we introduce MEG-GPT, a transformer based foundation model that uses time-attention and next time-point prediction. To facilitate this, we also introduce a novel data-driven tokeniser for continuous MEG data, which preserves the high temporal resolution of continuous MEG signals without lossy transformations. We trained MEG-GPT on tokenised brain region time-courses extracted from a large-scale MEG dataset (N=612, eyes-closed rest, Cam-CAN data), and show that the learnt model can generate data with realistic spatio-spectral properties, including transient events and population variability. Critically, it performs well in downstream decoding tasks, improving downstream supervised prediction task, showing improved zero-shot generalisation across sessions (improving accuracy from 0.54 to 0.59) and subjects (improving accuracy from 0.41 to 0.49) compared to a baseline methods. Furthermore, we show the model can be efficiently fine-tuned on a smaller labelled dataset to boost performance in cross-subject decoding scenarios. This work establishes a powerful foundation model for electrophysiological data, paving the way for applications in computational neuroscience and neural decoding.
Solitons near avoided mode crossing in $χ^{(2)}$ nanowaveguides
We present a model for chi^{(2)} waveguides accounting for three modes, two of which make an avoided crossing at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous wave (CW) solutions across much of the parameter-space and prevalence of its modulational instability. We also predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks. Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and CW existence and stability. We also simulate the two-color soliton generation from a single frequency pump pulse to back up its formation and stability properties.
Exact sampling of determinantal point processes with sublinear time preprocessing
We study the complexity of sampling from a distribution over all index subsets of the set {1,...,n} with the probability of a subset S proportional to the determinant of the submatrix L_S of some ntimes n p.s.d. matrix L, where L_S corresponds to the entries of L indexed by S. Known as a determinantal point process, this distribution is used in machine learning to induce diversity in subset selection. In practice, we often wish to sample multiple subsets S with small expected size k = E[|S|] ll n from a very large matrix L, so it is important to minimize the preprocessing cost of the procedure (performed once) as well as the sampling cost (performed repeatedly). For this purpose, we propose a new algorithm which, given access to L, samples exactly from a determinantal point process while satisfying the following two properties: (1) its preprocessing cost is n cdot poly(k), i.e., sublinear in the size of L, and (2) its sampling cost is poly(k), i.e., independent of the size of L. Prior to our results, state-of-the-art exact samplers required O(n^3) preprocessing time and sampling time linear in n or dependent on the spectral properties of L. We also give a reduction which allows using our algorithm for exact sampling from cardinality constrained determinantal point processes with ncdotpoly(k) time preprocessing.
LoRA vs Full Fine-tuning: An Illusion of Equivalence
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to match the performance of fully fine-tuned models on various tasks with an extreme reduction in the number of trainable parameters. Even in settings where both methods learn similarly accurate models, are their learned solutions really equivalent? We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure; moreover, the fine-tuned models themselves show distinct generalization behaviors when tested outside the adaptation task's distribution. More specifically, we first show that the weight matrices trained with LoRA have new, high-ranking singular vectors, which we call intruder dimensions. Intruder dimensions do not appear during full fine-tuning. Second, we show that LoRA models with intruder dimensions, despite achieving similar performance to full fine-tuning on the target task, become worse models of the pre-training distribution and adapt less robustly to multiple tasks sequentially. Higher-rank, rank-stabilized LoRA models closely mirror full fine-tuning, even when performing on par with lower-rank LoRA models on the same tasks. These results suggest that models updated with LoRA and full fine-tuning access different parts of parameter space, even when they perform equally on the fine-tuned distribution. We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
AISHELL6-whisper: A Chinese Mandarin Audio-visual Whisper Speech Dataset with Speech Recognition Baselines
Whisper speech recognition is crucial not only for ensuring privacy in sensitive communications but also for providing a critical communication bridge for patients under vocal restraint and enabling discrete interaction in noise-sensitive environments. The development of Chinese mandarin audio-visual whisper speech recognition is hindered by the lack of large-scale datasets. We present AISHELL6-Whisper, a large-scale open-source audio-visual whisper speech dataset, featuring 30 hours each of whisper speech and parallel normal speech, with synchronized frontal facial videos. Moreover, we propose an audio-visual speech recognition (AVSR) baseline based on the Whisper-Flamingo framework, which integrates a parallel training strategy to align embeddings across speech types, and employs a projection layer to adapt to whisper speech's spectral properties. The model achieves a Character Error Rate (CER) of 4.13% for whisper speech and 1.11% for normal speech in the test set of our dataset, and establishes new state-of-the-art results on the wTIMIT benchmark. The dataset and the AVSR baseline codes are open-sourced at https://zutm.github.io/AISHELL6-Whisper.
Towards Higher Effective Rank in Parameter-efficient Fine-tuning using Khatri--Rao Product
Parameter-efficient fine-tuning (PEFT) has become a standard approach for adapting large pre-trained models. Amongst PEFT methods, low-rank adaptation (LoRA) has achieved notable success. However, recent studies have highlighted its limitations compared against full-rank alternatives, particularly when applied to multimodal and large language models. In this work, we present a quantitative comparison amongst full-rank and low-rank PEFT methods using a synthetic matrix approximation benchmark with controlled spectral properties. Our results confirm that LoRA struggles to approximate matrices with relatively flat spectrums or high frequency components -- signs of high effective ranks. To this end, we introduce KRAdapter, a novel PEFT algorithm that leverages the Khatri-Rao product to produce weight updates, which, by construction, tends to produce matrix product with a high effective rank. We demonstrate performance gains with KRAdapter on vision-language models up to 1B parameters and on large language models up to 8B parameters, particularly on unseen common-sense reasoning tasks. In addition, KRAdapter maintains the memory and compute efficiency of LoRA, making it a practical and robust alternative to fine-tune billion-scale parameter models.
A Solvable Model of Neural Scaling Laws
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws: specifically, their performance behaves predictably as a power law in either parameters or dataset size until bottlenecked by the other resource. To understand this better, we first identify the necessary properties allowing such scaling laws to arise and then propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology. By solving this model in the dual limit of large training set size and large number of parameters, we gain insight into (i) the statistical structure of datasets and tasks that lead to scaling laws, (ii) the way nonlinear feature maps, such as those provided by neural networks, enable scaling laws when trained on these datasets, (iii) the optimality of the equiparameterization scaling of training sets and parameters, and (iv) whether such scaling laws can break down and how they behave when they do. Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps and then translated into power-law scalings of the test loss and how the finite extent of the data's spectral power law causes the model's performance to plateau.
How Instruction and Reasoning Data shape Post-Training: Data Quality through the Lens of Layer-wise Gradients
As the post-training of large language models (LLMs) advances from instruction-following to complex reasoning tasks, understanding how different data affect finetuning dynamics remains largely unexplored. In this paper, we present a spectral analysis of layer-wise gradients induced by low/high-quality instruction and reasoning data for LLM post-training. Our analysis reveals that widely-studied metrics for data evaluation, e.g., IFD, InsTag, Difficulty, and Reward, can be explained and unified by spectral properties computed from gradients' singular value decomposition (SVD). Specifically, higher-quality data are usually associated with lower nuclear norms and higher effective ranks. Notably, effective rank exhibits better robustness and resolution than nuclear norm in capturing subtle quality differences. For example, reasoning data achieves substantially higher effective ranks than instruction data, implying richer gradient structures on more complex tasks. Our experiments also highlight that models within the same family share similar gradient patterns regardless of their sizes, whereas different model families diverge significantly. Providing a unified view on the effects of data quality across instruction and reasoning data, this work illuminates the interplay between data quality and training stability, shedding novel insights into developing better data exploration strategies for post-training.
Spectral Smoothness of Ground Plane Backed Log-Periodic Dipole Antennas for Radioastronomical Applications
The spectral smoothness properties of the low-frequency array of the Square Kilometer Array (SKA), namely SKA-Low, are an important issue for its scientific objectives to be attainable. A large array of 256 log-periodic dipole antennas, installed on top of a 42~m circular ground plane, will work as an SKA-Low station in the frequency range 50-350 MHz. In this article, the ground plane induced effects are examined in terms of antenna beam spectral characteristics, while different antenna placements are considered. Results are produced both at isolated antenna and at array level in the band 50-100 MHz, by employing an approximate method for the speeding-up of array simulations. We attempt to distinguish the ground plane effect from that of mutual coupling among antennas, which appears to be more severe at specific frequencies, using 2 figures of merit. The Discrete Fourier Transform (DFT) components of gain pattern ratios identify the fundamental spatial components of the ripple, while the Envelope Correlation Coefficient quantifies the penalty to considering an infinite ground plane.
Muon: Training and Trade-offs with Latent Attention and MoE
We present a comprehensive theoretical and empirical study of the Muon optimizer for training transformers only with a small to medium decoder (30M - 200M parameters), with an emphasis on its mathematical foundations, convergence properties and synergistic interactions with modern architectural optimizations. Building on recent work showing Muon's scalability, we provide rigorous theoretical analysis including: (i)showing the convergence rate under standard assumptions, (ii) spectral regularization properties that prevent gradient explosion, (iii) connection to natural gradient descent on the Stiefel manifold, and (iv) equivalence to steepest gradient descent under the spectral norm. Crucially, we demonstrate that Muon expands the Pareto frontier in the compute-time trade-off by maintaining superior data efficiency at large batch sizes, a key finding of~essentialai2025muon that we validate across our model scales. Empirically, Muon reaches the target loss with 48-52\% of the training calculated by AdamW while maintaining or improving the final perplexity, consistent with larger-scale results. When combined with Multi-Head Latent Attention (MLA) and Mixture-of-Experts (MoE), we observe multiplicative efficiency gains: MLA+MoE+Muon achieves 68\% memory reduction and 3.2times inference speedup, while improving perplexity by 8-12\%. We provide detailed procedures on 15 architectural and optimizer components, stability analyzes across 100+ training runs, and practical implementation guidelines including Newton-Schulz coefficients (3.4445, -4.7750, 2.0315) optimized by~su2024muonblog. Our theoretical analysis and comprehensive experiments establish Muon as a principled, robust alternative to AdamW that particularly excels when combined with modern efficiency techniques and large-batch training regimes.
Physical properties of circumnuclear ionising clusters. III. Kinematics of gas and stars in NGC 7742
In this third paper of a series, we study the kinematics of the ionised gas and stars, calculating the dynamical masses of the circumnuclear star-forming regions in the ring of of the face-on spiral NGC 7742. We have used high spectral resolution data from the MEGARA instrument attached to the Gran Telescopio Canarias (GTC) to measure the kinematical components of the nebular emission lines of selected HII regions and the stellar velocity dispersions from the CaT absorption lines that allow the derivation of the associated cluster virialized masses. The emission line profiles show two different kinematical components: a narrow one with velocity dispersion sim 10 km/s and a broad one with velocity dispersion similar to those found for the stellar absorption lines. The derived star cluster dynamical masses range from 2.5 times 10^6 to 10.0 times 10^7 M_odot. The comparison of gas and stellar velocity dispersions suggests a scenario where the clusters have formed simultaneously in a first star formation episode with a fraction of the stellar evolution feedback remaining trapped in the cluster, subject to the same gravitational potential as the cluster stars. Between 0.15 and 7.07 % of the total dynamical mass of the cluster would have cooled down and formed a new, younger, population of stars, responsible for the ionisation of the gas currently observed.
Spectral State Space Models
This paper studies sequence modeling for prediction tasks with long range dependencies. We propose a new formulation for state space models (SSMs) based on learning linear dynamical systems with the spectral filtering algorithm (Hazan et al. (2017)). This gives rise to a novel sequence prediction architecture we call a spectral state space model. Spectral state space models have two primary advantages. First, they have provable robustness properties as their performance depends on neither the spectrum of the underlying dynamics nor the dimensionality of the problem. Second, these models are constructed with fixed convolutional filters that do not require learning while still outperforming SSMs in both theory and practice. The resulting models are evaluated on synthetic dynamical systems and long-range prediction tasks of various modalities. These evaluations support the theoretical benefits of spectral filtering for tasks requiring very long range memory.
ALMA/SCUBA-2 COSMOS Survey: Properties of X-ray- and SED-selected AGNs in Bright Submillimeter Galaxies
We investigate the properties of active galactic nuclei (AGNs) in the brightest submillimeter galaxies (SMGs) in the COSMOS field. We utilize the bright sample of ALMA/SCUBA-2 COSMOS Survey (AS2COSMOS), which consists of 260 SMGs with S_{870, mu m}=0.7--19.2,mJy at z=0--6. We perform optical to millimeter spectral energy distribution (SED) modeling for the whole sample. We identify 24 AGN-host galaxies from the SEDs. Supplemented by 23 X-ray detected AGNs (X-ray AGNs), we construct an overall sample of 40 AGN-host galaxies. The X-ray luminosity upper bounds indicate that the X-ray undetected SED-identified AGNs are likely to be nearly Compton thick or have unusually suppressed X-ray emission. From visual classification, we identify 25^{+6}_{-5}\% of the SMGs without AGNs as major merger candidates. This fraction is almost consistent with the general galaxy population at zsim2, suggesting that major mergers are not necessarily required for the enhanced star formation in SMGs. We also identify 47^{+16}_{-15}\% of the AGN hosts as major merger candidates, which is about twice as high as that in the SMGs without AGNs. This suggests that major mergers play a key role in triggering AGN activity in bright SMGs.
Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset
Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available.
DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/
SAGA: Spectral Adversarial Geometric Attack on 3D Meshes
A triangular mesh is one of the most popular 3D data representations. As such, the deployment of deep neural networks for mesh processing is widely spread and is increasingly attracting more attention. However, neural networks are prone to adversarial attacks, where carefully crafted inputs impair the model's functionality. The need to explore these vulnerabilities is a fundamental factor in the future development of 3D-based applications. Recently, mesh attacks were studied on the semantic level, where classifiers are misled to produce wrong predictions. Nevertheless, mesh surfaces possess complex geometric attributes beyond their semantic meaning, and their analysis often includes the need to encode and reconstruct the geometry of the shape. We propose a novel framework for a geometric adversarial attack on a 3D mesh autoencoder. In this setting, an adversarial input mesh deceives the autoencoder by forcing it to reconstruct a different geometric shape at its output. The malicious input is produced by perturbing a clean shape in the spectral domain. Our method leverages the spectral decomposition of the mesh along with additional mesh-related properties to obtain visually credible results that consider the delicacy of surface distortions. Our code is publicly available at https://github.com/StolikTomer/SAGA.
Spectral Retrieval with JWST Photometric data: a Case Study for HIP 65426 b
Half of the JWST high-contrast imaging objects will only have photometric data {{as of Cycle 2}}. However, to better understand their atmospheric chemistry which informs formation origin, spectroscopic data are preferred. Using HIP 65426 b, we investigate to what extent planet properties and atmospheric chemical abundance can be retrieved with only JWST photometric data points (2.5-15.5 mum) in conjunction with ground-based archival low-resolution spectral data (1.0-2.3 mum). We find that the data is consistent with an atmosphere with solar metallicity and C/O ratios at 0.40 and 0.55. We rule out 10x solar metallicity and an atmosphere with C/O = 1.0. We also find strong evidence of silicate clouds but no sign of an enshrouding featureless {{dust}} extinction. This work offers guidance and cautionary tales on analyzing data in the absence of medium-to-high resolution spectral data.
DCTdiff: Intriguing Properties of Image Generative Modeling in the DCT Space
This paper explores image modeling from the frequency space and introduces DCTdiff, an end-to-end diffusion generative paradigm that efficiently models images in the discrete cosine transform (DCT) space. We investigate the design space of DCTdiff and reveal the key design factors. Experiments on different frameworks (UViT, DiT), generation tasks, and various diffusion samplers demonstrate that DCTdiff outperforms pixel-based diffusion models regarding generative quality and training efficiency. Remarkably, DCTdiff can seamlessly scale up to high-resolution generation without using the latent diffusion paradigm. Finally, we illustrate several intriguing properties of DCT image modeling. For example, we provide a theoretical proof of why `image diffusion can be seen as spectral autoregression', bridging the gap between diffusion and autoregressive models. The effectiveness of DCTdiff and the introduced properties suggest a promising direction for image modeling in the frequency space. The code is at https://github.com/forever208/DCTdiff.
Gaia Data Release 3: Summary of the content and survey properties
We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G_{BP}, and G_{RP} pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G_{rvs} < 14 and 3100 <T_{eff} <14500 , have new determinations of their mean radial velocities based on data collected by Gaia. We provide G_{rvs} magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800,000 astrometric, spectroscopic and eclipsing binaries. More than 150,000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged)
Spectral-Enhanced Transformers: Leveraging Large-Scale Pretrained Models for Hyperspectral Object Tracking
Hyperspectral object tracking using snapshot mosaic cameras is emerging as it provides enhanced spectral information alongside spatial data, contributing to a more comprehensive understanding of material properties. Using transformers, which have consistently outperformed convolutional neural networks (CNNs) in learning better feature representations, would be expected to be effective for Hyperspectral object tracking. However, training large transformers necessitates extensive datasets and prolonged training periods. This is particularly critical for complex tasks like object tracking, and the scarcity of large datasets in the hyperspectral domain acts as a bottleneck in achieving the full potential of powerful transformer models. This paper proposes an effective methodology that adapts large pretrained transformer-based foundation models for hyperspectral object tracking. We propose an adaptive, learnable spatial-spectral token fusion module that can be extended to any transformer-based backbone for learning inherent spatial-spectral features in hyperspectral data. Furthermore, our model incorporates a cross-modality training pipeline that facilitates effective learning across hyperspectral datasets collected with different sensor modalities. This enables the extraction of complementary knowledge from additional modalities, whether or not they are present during testing. Our proposed model also achieves superior performance with minimal training iterations.
Probing X-ray Timing and Spectral Variability in the Blazar PKS 2155-304 Over a Decade of XMM-Newton Observations
Blazars, a class of active galactic nuclei (AGN) powered by supermassive black holes, are known for their remarkable variability across multiple timescales and wavelengths. With advancements in both ground- and space-based telescopes, our understanding of AGN central engines has significantly improved. However, the mechanisms driving this variability remain elusive, and continue to fascinate both theorists and observers alike. The primary objective of this study is to constrain the X-ray variability properties of the TeV blazar PKS 2155-304. We conduct a comprehensive X-ray spectral and timing analysis, focusing on both long-term and intra-day variability. This analysis uses data from 22 epochs of XMM-Newton EPIC-pn observations, collected over 15 years (2000-2014). To investigate the variability of the source, we applied both timing and spectral analyses. For the timing analysis, we estimated fractional variability, variability amplitude, minimum variability timescales, flux distribution, and power spectral density (PSD). In the spectral analysis, we fitted the X-ray spectra using power-law, log-parabola, and broken power-law (BPL) models to determine the best-fitting parameters. Additionally, we studied the hardness ratio (HR). We observed moderate intra-day variability in most of the light curves. Seven out of the twenty-two observations showed a clear bimodal flux distribution, indicating the presence of two distinct flux states. Our analysis revealed a variable power-law PSD slope. Most HR plots did not show significant variation with flux, except for one observation (OBSID 0124930501), where HR increased with flux (Count/s). The fitted X-ray spectra favored the BPL model for the majority of observations. The findings of this work shed light on the intraday variability of blazars, providing insights into the non-thermal jet processes that drive the observed flux variations.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Enhanced Spectral Density of a Single Germanium Vacancy Center in a Nanodiamond by Cavity-Integration
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV^-), are promising candidates for many applications of quantum optics such as a quantum network. For efficient implementation, the optical transitions need to be coupled to a single optical mode. Here, we demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P\'erot microcavity by nanomanipulation utilizing an atomic force microscope. Coupling of the GeV- defect to the cavity mode is achieved, while the optical resonator maintains a high finesse of F = 7,700 and a 48-fold spectral density enhancement is observed. This article demonstrates the integration of a GeV- defect with a Fabry-P\'erot microcavity under ambient conditions with the potential to extend the experiments to cryogenic temperatures towards an efficient spin-photon platform.
Intriguing properties of synthetic images: from generative adversarial networks to diffusion models
Detecting fake images is becoming a major goal of computer vision. This need is becoming more and more pressing with the continuous improvement of synthesis methods based on Generative Adversarial Networks (GAN), and even more with the appearance of powerful methods based on Diffusion Models (DM). Towards this end, it is important to gain insight into which image features better discriminate fake images from real ones. In this paper we report on our systematic study of a large number of image generators of different families, aimed at discovering the most forensically relevant characteristics of real and generated images. Our experiments provide a number of interesting observations and shed light on some intriguing properties of synthetic images: (1) not only the GAN models but also the DM and VQ-GAN (Vector Quantized Generative Adversarial Networks) models give rise to visible artifacts in the Fourier domain and exhibit anomalous regular patterns in the autocorrelation; (2) when the dataset used to train the model lacks sufficient variety, its biases can be transferred to the generated images; (3) synthetic and real images exhibit significant differences in the mid-high frequency signal content, observable in their radial and angular spectral power distributions.
Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies
Kerr nonlinear oscillators driven by a two-photon process are promising systems to encode quantum information and to ensure a hardware-efficient scaling towards fault-tolerant quantum computation. In this paper, we show that an extra control parameter, the detuning of the two-photon drive with respect to the oscillator resonance, plays a crucial role in the properties of the defined qubit. At specific values of this detuning, we benefit from strong symmetries in the system, leading to multiple degeneracies in the spectrum of the effective confinement Hamiltonian. Overall, these degeneracies lead to a stronger suppression of bit-flip errors. We also study the combination of such Hamiltonian confinement with colored dissipation to suppress leakage outside of the bosonic code space. We show that the additional degeneracies allow us to perform fast and high-fidelity gates while preserving a strong suppression of bit-flip errors.
Understanding the Spectral Bias of Coordinate Based MLPs Via Training Dynamics
Spectral bias is an important observation of neural network training, stating that the network will learn a low frequency representation of the target function before converging to higher frequency components. This property is interesting due to its link to good generalization in over-parameterized networks. However, in low dimensional settings, a severe spectral bias occurs that obstructs convergence to high frequency components entirely. In order to overcome this limitation, one can encode the inputs using a high frequency sinusoidal encoding. Previous works attempted to explain this phenomenon using Neural Tangent Kernel (NTK) and Fourier analysis. However, NTK does not capture real network dynamics, and Fourier analysis only offers a global perspective on the network properties that induce this bias. In this paper, we provide a novel approach towards understanding spectral bias by directly studying ReLU MLP training dynamics. Specifically, we focus on the connection between the computations of ReLU networks (activation regions), and the speed of gradient descent convergence. We study these dynamics in relation to the spatial information of the signal to understand how they influence spectral bias. We then use this formulation to study the severity of spectral bias in low dimensional settings, and how positional encoding overcomes this.
Hallucination Detection in LLMs Using Spectral Features of Attention Maps
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks but remain prone to hallucinations. Detecting hallucinations is essential for safety-critical applications, and recent methods leverage attention map properties to this end, though their effectiveness remains limited. In this work, we investigate the spectral features of attention maps by interpreting them as adjacency matrices of graph structures. We propose the LapEigvals method, which utilises the top-k eigenvalues of the Laplacian matrix derived from the attention maps as an input to hallucination detection probes. Empirical evaluations demonstrate that our approach achieves state-of-the-art hallucination detection performance among attention-based methods. Extensive ablation studies further highlight the robustness and generalisation of LapEigvals, paving the way for future advancements in the hallucination detection domain.
Red, hot, and very metal poor: extreme properties of a massive accreting black hole in the first 500 Myr
The James Webb Space Telescope (JWST) has recently discovered a new population of objects at high redshift referred to as `Little Red Dots' (LRDs). Their nature currently remains elusive, despite their surprisingly high inferred number densities. This emerging population of red point-like sources is reshaping our view of the early Universe and may shed light on the formation of high-redshift supermassive black holes. Here we present a spectroscopically confirmed LRD CANUCS-LRD-z8.6 at z_{rm spec}=8.6319pm 0.0005 hosting an Active Galactic Nucleus (AGN), using JWST data. This source shows the typical spectral shape of an LRD (blue UV and red optical continuum, unresolved in JWST imaging), along with broad Hbeta line emission, detection of high-ionization emission lines (CIV, NIV]) and very high electron temperature indicative of the presence of AGN. This is also combined with a very low metallicity (Z<0.1 Z_odot). The presence of all these diverse features in one source makes CANUCS-LRD-z8.6 unique. We show that the inferred black hole mass of CANUCS-LRD-z8.6 (M_{rm BH}=1.0^{+0.6}_{-0.4}times 10^{8}rm ~M_odot) strongly challenges current standard theoretical models and simulations of black hole formation, and forces us to adopt `ad hoc' prescriptions. Indeed if massive seeds, or light seeds with super-Eddington accretion, are considered, the observed BH mass of CANUCS-LRD-z8.6 at z=8.6 can be reproduced. Moreover, the black hole is over-massive compared to its host, relative to the local M_{rm BH}-M_* relations, pointing towards an earlier and faster evolution of the black hole compared to its host galaxy.
UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
Euclid Quick Data Release (Q1) Exploring galaxy properties with a multi-modal foundation model
Modern astronomical surveys, such as the Euclid mission, produce high-dimensional, multi-modal data sets that include imaging and spectroscopic information for millions of galaxies. These data serve as an ideal benchmark for large, pre-trained multi-modal models, which can leverage vast amounts of unlabelled data. In this work, we present the first exploration of Euclid data with AstroPT, an autoregressive multi-modal foundation model trained on approximately 300 000 optical and infrared Euclid images and spectral energy distributions (SEDs) from the first Euclid Quick Data Release. We compare self-supervised pre-training with baseline fully supervised training across several tasks: galaxy morphology classification; redshift estimation; similarity searches; and outlier detection. Our results show that: (a) AstroPT embeddings are highly informative, correlating with morphology and effectively isolating outliers; (b) including infrared data helps to isolate stars, but degrades the identification of edge-on galaxies, which are better captured by optical images; (c) simple fine-tuning of these embeddings for photometric redshift and stellar mass estimation outperforms a fully supervised approach, even when using only 1% of the training labels; and (d) incorporating SED data into AstroPT via a straightforward multi-modal token-chaining method improves photo-z predictions, and allow us to identify potentially more interesting anomalies (such as ringed or interacting galaxies) compared to a model pre-trained solely on imaging data.
Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation
Convolutional Neural Networks (CNN) have been successful in processing data signals that are uniformly sampled in the spatial domain (e.g., images). However, most data signals do not natively exist on a grid, and in the process of being sampled onto a uniform physical grid suffer significant aliasing error and information loss. Moreover, signals can exist in different topological structures as, for example, points, lines, surfaces and volumes. It has been challenging to analyze signals with mixed topologies (for example, point cloud with surface mesh). To this end, we develop mathematical formulations for Non-Uniform Fourier Transforms (NUFT) to directly, and optimally, sample nonuniform data signals of different topologies defined on a simplex mesh into the spectral domain with no spatial sampling error. The spectral transform is performed in the Euclidean space, which removes the translation ambiguity from works on the graph spectrum. Our representation has four distinct advantages: (1) the process causes no spatial sampling error during the initial sampling, (2) the generality of this approach provides a unified framework for using CNNs to analyze signals of mixed topologies, (3) it allows us to leverage state-of-the-art backbone CNN architectures for effective learning without having to design a particular architecture for a particular data structure in an ad-hoc fashion, and (4) the representation allows weighted meshes where each element has a different weight (i.e., texture) indicating local properties. We achieve results on par with the state-of-the-art for the 3D shape retrieval task, and a new state-of-the-art for the point cloud to surface reconstruction task.
Evolution of the Accretion Disk and Corona During the Outburst of the Neutron Star Transient MAXI J1807+132
Low-mass X-ray binaries with a neutron star as the primary object show a complex array of phenomenology during outbursts. The observed variability in X-ray emission primarily arises from changes in the innermost regions of the accretion disk, neutron star surface, and corona. In this work, we present the results of a comprehensive X-ray spectral and timing analysis of the neutron star transient MAXI J1807+132 during its 2023 outburst using data from the NICER observatory. The outburst is marked by a very rapid rise in the count rate by about a factor of 20 in a day. The source undergoes full state transitions and displays hysteresis effect in the hardness and rms intensity diagrams. Spectral analysis with a three-component model is consistent with disk truncation during the hard states and reaching the last stable orbit during the intermediate and soft states. We discuss the different values of the last stable radius in the context of possible distance of the source and magnetic field strength. The characteristic frequencies throughout the hard and intermediate states are found to be strongly correlated with the inner radius of the disk. Together with the spectral and fast variability properties, we attempt to trace the evolution of the size of the corona along the outburst. Following the main outburst, the source undergoes a high amplitude reflare wherein it shows a complex behavior with relatively high variability (10 %), but low hardness.
Ambient Diffusion Omni: Training Good Models with Bad Data
We show how to use low-quality, synthetic, and out-of-distribution images to improve the quality of a diffusion model. Typically, diffusion models are trained on curated datasets that emerge from highly filtered data pools from the Web and other sources. We show that there is immense value in the lower-quality images that are often discarded. We present Ambient Diffusion Omni, a simple, principled framework to train diffusion models that can extract signal from all available images during training. Our framework exploits two properties of natural images -- spectral power law decay and locality. We first validate our framework by successfully training diffusion models with images synthetically corrupted by Gaussian blur, JPEG compression, and motion blur. We then use our framework to achieve state-of-the-art ImageNet FID, and we show significant improvements in both image quality and diversity for text-to-image generative modeling. The core insight is that noise dampens the initial skew between the desired high-quality distribution and the mixed distribution we actually observe. We provide rigorous theoretical justification for our approach by analyzing the trade-off between learning from biased data versus limited unbiased data across diffusion times.
Utilizing Wavelet Transform in the Analysis of Scaling Dynamics for Milk Quality Evaluation
Food safety and quality are paramount concerns worldwide, especially concerning nutritional quality and its impact on human health. Ensuring the accuracy and efficiency of milk quality assessment is vital for maintaining the quality of dairy farm produce. Milk spectral data, Mid-infrared spectra (MIRS) of milk samples, are frequently employed for milk quality evaluations, encompassing various milk quality parameters. However, conventional milk quality analyses have overlooked the scaling nature, known as stochastic similarity in different scales, inherent in milk spectral data. Wavelet transforms are among the tools used in these analyses, although they are primarily used as data pre-processing techniques without fully realizing their potential in extracting valuable insights. The primary purpose of this study is to demonstrate the importance of accounting for scaling properties in assessing milk quality. A set of 12 descriptors is computed to characterize scaling properties in milk spectral data within the wavelet domain. These descriptors are then assessed for their effectiveness in milk quality assessments utilizing 18 different milk quality parameters. They notably demonstrated comparable performance to existing methods while utilizing fewer features when applied to an MIRS dataset. This innovative approach holds substantial promise for advancing the field of milk quality assessment, offering a means to achieve more accurate and efficient evaluations while shedding light on previously unexplored aspects of milk spectral data.
The DESI PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Mock Challenge
The PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass (M_*), star formation rate ({rm SFR}), stellar metallicity (Z_{rm MW}), and stellar age (t_{rm age, MW}), for >10 million galaxies of the DESI Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, Bayesian inference framework, and methodology of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true galaxy properties of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M_*, {rm SFR}, Z_{rm MW}, and t_{rm age, MW} of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors. They impose a {rm SFR}{>}10^{-1} M_odot/{rm yr} lower bound on {rm SFR}, a {sim}0.3 dex bias on log Z_{rm MW} for galaxies with low spectral signal-to-noise, and t_{rm age, MW} < 8,{rm Gyr} upper bound on stellar age. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and provide a probabilistic value-added galaxy catalog that will extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses.
Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field Crop Yield Prediction
Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding farmers, and industry stakeholders. However, this task is complex and depends on multiple factors, such as environmental conditions, soil properties, and management practices. Combining heterogeneous data views poses a fusion challenge, like identifying the view-specific contribution to the predictive task. We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-view input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information. To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module. The view-encoders handle the heterogeneity of data sources with varying temporal resolutions by learning a view-specific representation. These representations are adaptively fused via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of the view-representations. The MVGF model is trained at sub-field level with 10 m resolution pixels. Our evaluations show that the MVGF outperforms conventional models on the same task, achieving the best results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina, the MVGF model achieves an R2 value of 0.68 at sub-field yield prediction, while at field level evaluation (comparing field averages), it reaches around 0.80 across different countries. The GU module learned different weights based on the country and crop-type, aligning with the variable significance of each data source to the prediction task.
You Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning
The ever-increasing size of large language models (LLMs) presents significant challenges for deployment due to their heavy computational and memory requirements. Current model pruning techniques attempt to alleviate these issues by relying heavily on external calibration datasets to determine which parameters to prune or compress, thus limiting their flexibility and scalability across different compression ratios. Moreover, these methods often cause severe performance degradation, particularly in downstream tasks, when subjected to higher compression rates. In this paper, we propose PruneNet, a novel model compression method that addresses these limitations by reformulating model pruning as a policy learning process. PruneNet decouples the pruning process from the model architecture, eliminating the need for calibration datasets. It learns a stochastic pruning policy to assess parameter importance solely based on intrinsic model properties while preserving the spectral structure to minimize information loss. PruneNet can compress the LLaMA-2-7B model in just 15 minutes, achieving over 80% retention of its zero-shot performance with a 30% compression ratio, outperforming existing methods that retain only 75% performance. Furthermore, on complex multitask language understanding tasks, PruneNet demonstrates its robustness by preserving up to 80% performance of the original model, proving itself a superior alternative to conventional structured compression techniques.
AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON
Kolmogorov-Arnold Fourier Networks
Although Kolmogorov-Arnold based interpretable networks (KAN) have strong theoretical expressiveness, they face significant parameter explosion and high-frequency feature capture challenges in high-dimensional tasks. To address this issue, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which effectively integrates trainable Random Fourier Features (RFF) and a novel hybrid GELU-Fourier activation mechanism to balance parameter efficiency and spectral representation capabilities. Our key technical contributions include: (1) merging KAN's dual-matrix structure through matrix association properties to substantially reduce parameters; (2) introducing learnable RFF initialization strategies to eliminate spectral distortion in high-dimensional approximation tasks; (3) implementing an adaptive hybrid activation function that progressively enhances frequency representation during the training process. Comprehensive experiments demonstrate the superiority of our KAF across various domains including vision, NLP, audio processing, and differential equation-solving tasks, effectively combining theoretical interpretability with practical utility and computational efficiency.
Understanding the Neutron Star Population with the SKA
Since their discovery in the late 1960's the population of known neutron stars (NSs) has grown to ~2500. The last five decades of observations have yielded many surprises and demonstrated that the observational properties of NSs are remarkably diverse. The surveys that will be performed with SKA (the Square Kilometre Array) will produce a further tenfold increase in the number of Galactic NSs known. Moreover, the SKA's broad spectral coverage, sub-arraying and multi-beaming capabilities will allow us to characterise these sources with unprecedented efficiency, in turn enabling a giant leap in the understanding of their properties. Here we review the NS population and outline our strategies for studying each of the growing number of diverse classes that are populating the "NS zoo". Some of the main scientific questions that will be addressed by the much larger statistical samples and vastly improved timing efficiency provided by SKA include: (i) the spin period and spin-down rate distributions (and thus magnetic fields) at birth, and the associated information about the SNe wherein they are formed; (ii) the radio pulsar-magnetar connection; (iii) the link between normal radio pulsars, intermittent pulsars and rotating radio transients; (iv) the slowest possible spin period for a radio pulsar (revealing the conditions at the pulsar death-line); (v) proper motions of pulsars (revealing SN kick physics); (vi) the mass distribution of NSs (vii) the fastest possible spin period for a recycled pulsar (constraining magnetosphere-accretion disc interactions, gravitational wave radiation and the equation-of-state); (viii) the origin of high eccentricity millisecond pulsars (MSPs); (ix) the formation channels for recently identified triple systems; and finally (x) how isolated MSPs are formed. We expect that the SKA will break new ground unveiling exotic systems that will challenge... [abridged]
Follow-Up of Extended Shells around B[e] Stars
B[e] stars are massive B type emission line stars in different evolutionary stages ranging from pre-main sequence to post-main sequence. Due to their mass loss and ejection events these objects deposit huge amounts of mass and energy into their environment and enrich it with chemically processed material, contributing significantly to the chemical and dynamical evolution of their host galaxies. However, the large-scale environments of these enigmatic objects have not attracted much attention. The first and so far only catalog reporting the detection of extended shells around a sample of B[e] stars was an Ha imaging survey carried out in the year 2001, and was limited to bright targets in the northern hemisphere. We have recently started a follow-up of those targets to detect possible evolution of their nebulae in the plane of the sky over a baseline of two decades. Furthermore, we extend our survey to southern targets and fainter northern ones to complement and complete our knowledge on large-scale ejecta surrounding B[e] stars. Besides imaging in Ha and selected nebular lines, we utilize long-slit and 3D spectral observations across the nebulae to derive their physical properties. We discovered pronounced nebula structures around 15 more objects, resulting in a total of 27 B[e] stars with a large-scale nebula. Here we present our (preliminary) results for three selected objects: the two massive supergiants MWC137 and MWC 314, and the unclassified B[e] star MWC 819.
CleanMel: Mel-Spectrogram Enhancement for Improving Both Speech Quality and ASR
In this work, we propose CleanMel, a single-channel Mel-spectrogram denoising and dereverberation network for improving both speech quality and automatic speech recognition (ASR) performance. The proposed network takes as input the noisy and reverberant microphone recording and predicts the corresponding clean Mel-spectrogram. The enhanced Mel-spectrogram can be either transformed to the speech waveform with a neural vocoder or directly used for ASR. The proposed network is composed of interleaved cross-band and narrow-band processing in the Mel-frequency domain, for learning the full-band spectral pattern and the narrow-band properties of signals, respectively. Compared to linear-frequency domain or time-domain speech enhancement, the key advantage of Mel-spectrogram enhancement is that Mel-frequency presents speech in a more compact way and thus is easier to learn, which will benefit both speech quality and ASR. Experimental results on five English and one Chinese datasets demonstrate a significant improvement in both speech quality and ASR performance achieved by the proposed model.Code and audio examples of our model are available online.
Approaching an unknown communication system by latent space exploration and causal inference
This paper proposes a methodology for discovering meaningful properties in data by exploring the latent space of unsupervised deep generative models. We combine manipulation of individual latent variables to extreme values with methods inspired by causal inference into an approach we call causal disentanglement with extreme values (CDEV) and show that this method yields insights for model interpretability. With this, we can test for what properties of unknown data the model encodes as meaningful, using it to glean insight into the communication system of sperm whales (Physeter macrocephalus), one of the most intriguing and understudied animal communication systems. The network architecture used has been shown to learn meaningful representations of speech; here, it is used as a learning mechanism to decipher the properties of another vocal communication system in which case we have no ground truth. The proposed methodology suggests that sperm whales encode information using the number of clicks in a sequence, the regularity of their timing, and audio properties such as the spectral mean and the acoustic regularity of the sequences. Some of these findings are consistent with existing hypotheses, while others are proposed for the first time. We also argue that our models uncover rules that govern the structure of units in the communication system and apply them while generating innovative data not shown during training. This paper suggests that an interpretation of the outputs of deep neural networks with causal inference methodology can be a viable strategy for approaching data about which little is known and presents another case of how deep learning can limit the hypothesis space. Finally, the proposed approach can be extended to other architectures and datasets.
Controlling the Spread of Epidemics on Networks with Differential Privacy
Designing effective strategies for controlling epidemic spread by vaccination is an important question in epidemiology, especially in the early stages when vaccines are limited. This is a challenging question when the contact network is very heterogeneous, and strategies based on controlling network properties, such as the degree and spectral radius, have been shown to be effective. Implementation of such strategies requires detailed information on the contact structure, which might be sensitive in many applications. Our focus here is on choosing effective vaccination strategies when the edges are sensitive and differential privacy guarantees are needed. Our main contributions are (varepsilon,delta)-differentially private algorithms for designing vaccination strategies by reducing the maximum degree and spectral radius. Our key technique is a private algorithm for the multi-set multi-cover problem, which we use for controlling network properties. We evaluate privacy-utility tradeoffs of our algorithms on multiple synthetic and real-world networks, and show their effectiveness.
Exphormer: Sparse Transformers for Graphs
Graph transformers have emerged as a promising architecture for a variety of graph learning and representation tasks. Despite their successes, though, it remains challenging to scale graph transformers to large graphs while maintaining accuracy competitive with message-passing networks. In this paper, we introduce Exphormer, a framework for building powerful and scalable graph transformers. Exphormer consists of a sparse attention mechanism based on two mechanisms: virtual global nodes and expander graphs, whose mathematical characteristics, such as spectral expansion, pseduorandomness, and sparsity, yield graph transformers with complexity only linear in the size of the graph, while allowing us to prove desirable theoretical properties of the resulting transformer models. We show that incorporating Exphormer into the recently-proposed GraphGPS framework produces models with competitive empirical results on a wide variety of graph datasets, including state-of-the-art results on three datasets. We also show that Exphormer can scale to datasets on larger graphs than shown in previous graph transformer architectures. Code can be found at https://github.com/hamed1375/Exphormer.
Spectral Sufficient Conditions for Graph Factors
The {K_{1,1}, K_{1,2},C_m: mgeq3}-factor of a graph is a spanning subgraph whose each component is an element of {K_{1,1}, K_{1,2},C_m: mgeq3}. In this paper, through the graph spectral methods, we establish the lower bound of the signless Laplacian spectral radius and the upper bound of the distance spectral radius to determine whether a graph admits a {K_2}-factor. We get a lower bound on the size (resp. the spectral radius) of G to guarantee that G contains a {K_{1,1}, K_{1,2},C_m: mgeq3}-factor. Then we determine an upper bound on the distance spectral radius of G to ensure that G has a {K_{1,1}, K_{1,2},C_m: mgeq3}-factor. Furthermore, by constructing extremal graphs, we show that the above all bounds are best possible.
Trace formulae for Schrodinger operators on metric graphs with applications to recovering matching conditions
The paper is a continuation of the study started in Yorzh1. Schrodinger operators on finite compact metric graphs are considered under the assumption that the matching conditions at the graph vertices are of delta type. Either an infinite series of trace formulae (provided that edge potentials are infinitely smooth) or a finite number of such formulae (in the cases of L_1 and C^M edge potentials) are obtained which link together two different quantum graphs under the assumption that their spectra coincide. Applications are given to the problem of recovering matching conditions for a quantum graph based on its spectrum.
Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates
We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain.
Measure of the spectra of periodic graph operators in the large-coupling limit
We derive a sharp criterion on the spectra of periodic discrete Schrödinger operators acting on connected periodic lattices: the measure of the spectrum goes to zero as the coupling constant goes to infinity if and only if there is no infinite connected path of degeneracies.
Classical Glasses, Black Holes, and Strange Quantum Liquids
From the dynamics of a broad class of classical mean-field glass models one may obtain a quantum model with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization (quasi-)invariance in the dynamical equations for correlations. The low eigenvalue spectrum of the resulting quantum model is directly related to the structure and exploration of metastable states in the landscape of the original classical glass model. This mapping reveals deep connections between classical glasses and the properties of SYK-like models.
PAH Emission Spectra and Band Ratios for Arbitrary Radiation Fields with the Single Photon Approximation
We present a new method for generating emission spectra from polycyclic aromatic hydrocarbons (PAHs) in arbitrary radiation fields. We utilize the single-photon limit for PAH heating and emission to treat individual photon absorptions as independent events. This allows the construction of a set of single-photon emission "basis spectra" that can be scaled to produce an output emission spectrum given any input heating spectrum. We find that this method produces agreement with PAH emission spectra computed accounting for multi-photon effects to within simeq10% in the 3-20~{rm mu m} wavelength range for radiation fields with intensity U<100. We use this framework to explore the dependence of PAH band ratios on the radiation field spectrum across grain sizes, finding in particular a strong dependence of the 3.3 to 11.2~mum band ratio on radiation field hardness. A Python-based tool and a set of basis spectra that can be used to generate these emission spectra are made publicly available.
Projections onto Spectral Matrix Cones
Semidefinite programming is a fundamental problem class in convex optimization, but despite recent advances in solvers, solving large-scale semidefinite programs remains challenging. Generally the matrix functions involved are spectral or unitarily invariant, i.e., they depend only on the eigenvalues or singular values of the matrix. This paper investigates how spectral matrix cones -- cones defined from epigraphs and perspectives of spectral or unitarily invariant functions -- can be used to enhance first-order conic solvers for semidefinite programs. Our main result shows that projecting a matrix can be reduced to projecting its eigenvalues or singular values, which we demonstrate can be done at a negligible cost compared to the eigenvalue or singular value decomposition itself. We have integrated support for spectral matrix cone projections into the Splitting Conic Solver (SCS). Numerical experiments show that SCS with this enhancement can achieve speedups of up to an order of magnitude for solving semidefinite programs arising in experimental design, robust principal component analysis, and graph partitioning.
Modulate Your Spectrum in Self-Supervised Learning
Whitening loss offers a theoretical guarantee against feature collapse in self-supervised learning (SSL) with joint embedding architectures. Typically, it involves a hard whitening approach, transforming the embedding and applying loss to the whitened output. In this work, we introduce Spectral Transformation (ST), a framework to modulate the spectrum of embedding and to seek for functions beyond whitening that can avoid dimensional collapse. We show that whitening is a special instance of ST by definition, and our empirical investigations unveil other ST instances capable of preventing collapse. Additionally, we propose a novel ST instance named IterNorm with trace loss (INTL). Theoretical analysis confirms INTL's efficacy in preventing collapse and modulating the spectrum of embedding toward equal-eigenvalues during optimization. Our experiments on ImageNet classification and COCO object detection demonstrate INTL's potential in learning superior representations. The code is available at https://github.com/winci-ai/INTL.
DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models
Molecular structure elucidation from spectra is a foundational problem in chemistry, with profound implications for compound identification, synthesis, and drug development. Traditional methods rely heavily on expert interpretation and lack scalability. Pioneering machine learning methods have introduced retrieval-based strategies, but their reliance on finite libraries limits generalization to novel molecules. Generative models offer a promising alternative, yet most adopt autoregressive SMILES-based architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data using diffusion models. DiffSpectra formulates structure elucidation as a conditional generation process. Its denoising network is parameterized by Diffusion Molecule Transformer, an SE(3)-equivariant architecture that integrates topological and geometric information. Conditioning is provided by SpecFormer, a transformer-based spectral encoder that captures intra- and inter-spectral dependencies from multi-modal spectra. Extensive experiments demonstrate that DiffSpectra achieves high accuracy in structure elucidation, recovering exact structures with 16.01% top-1 accuracy and 96.86% top-20 accuracy through sampling. The model benefits significantly from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. These results highlight the effectiveness of spectrum-conditioned diffusion modeling in addressing the challenge of molecular structure elucidation. To our knowledge, DiffSpectra is the first framework to unify multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.
On the Effectiveness of Spectral Discriminators for Perceptual Quality Improvement
Several recent studies advocate the use of spectral discriminators, which evaluate the Fourier spectra of images for generative modeling. However, the effectiveness of the spectral discriminators is not well interpreted yet. We tackle this issue by examining the spectral discriminators in the context of perceptual image super-resolution (i.e., GAN-based SR), as SR image quality is susceptible to spectral changes. Our analyses reveal that the spectral discriminator indeed performs better than the ordinary (a.k.a. spatial) discriminator in identifying the differences in the high-frequency range; however, the spatial discriminator holds an advantage in the low-frequency range. Thus, we suggest that the spectral and spatial discriminators shall be used simultaneously. Moreover, we improve the spectral discriminators by first calculating the patch-wise Fourier spectrum and then aggregating the spectra by Transformer. We verify the effectiveness of the proposed method twofold. On the one hand, thanks to the additional spectral discriminator, our obtained SR images have their spectra better aligned to those of the real images, which leads to a better PD tradeoff. On the other hand, our ensembled discriminator predicts the perceptual quality more accurately, as evidenced in the no-reference image quality assessment task.
Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to compute reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet. The official implementation is available at https://github.com/ChenLiu-1996/DiffusionSpectralEntropy.
Multiplicities of Eigenvalues of the Diffusion Operator with Random Jumps from the Boundary
This paper deals with a non-self-adjoint differential operator which is associated with a diffusion process with random jumps from the boundary. Our main result is that the algebraic multiplicity of an eigenvalue is equal to its order as a zero of the characteristic function Delta(lambda) . This can be used to determine the multiplicities of eigenvalues for concrete operators.
On the generation of periodic discrete structures with identical two-point correlation
Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media.
HoloNets: Spectral Convolutions do extend to Directed Graphs
Within the graph learning community, conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs: Only there could the existence of a well-defined graph Fourier transform be guaranteed, so that information may be translated between spatial- and spectral domains. Here we show this traditional reliance on the graph Fourier transform to be superfluous and -- making use of certain advanced tools from complex analysis and spectral theory -- extend spectral convolutions to directed graphs. We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based. In order to thoroughly test the developed theory, we conduct experiments in real world settings, showcasing that directed spectral convolutional networks provide new state of the art results for heterophilic node classification on many datasets and -- as opposed to baselines -- may be rendered stable to resolution-scale varying topological perturbations.
Generalization error of spectral algorithms
The asymptotically precise estimation of the generalization of kernel methods has recently received attention due to the parallels between neural networks and their associated kernels. However, prior works derive such estimates for training by kernel ridge regression (KRR), whereas neural networks are typically trained with gradient descent (GD). In the present work, we consider the training of kernels with a family of spectral algorithms specified by profile h(lambda), and including KRR and GD as special cases. Then, we derive the generalization error as a functional of learning profile h(lambda) for two data models: high-dimensional Gaussian and low-dimensional translation-invariant model. Under power-law assumptions on the spectrum of the kernel and target, we use our framework to (i) give full loss asymptotics for both noisy and noiseless observations (ii) show that the loss localizes on certain spectral scales, giving a new perspective on the KRR saturation phenomenon (iii) conjecture, and demonstrate for the considered data models, the universality of the loss w.r.t. non-spectral details of the problem, but only in case of noisy observation.
Eigenvalues restricted by Lyapunov exponent of eigenstates
We point out that the Lyapunov exponent of the eigenstate places restrictions on the eigenvalue. Consequently, with regard to non-Hermitian systems, even without any symmetry, the non-conservative Hamiltonians can exhibit real spectra as long as Lyapunov exponents of eigenstates inhibit imaginary parts of eigenvalues. Our findings open up a new route to study non-Hermitian physics.
Transform Once: Efficient Operator Learning in Frequency Domain
Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.
Learning Eigenstructures of Unstructured Data Manifolds
We introduce a novel framework that directly learns a spectral basis for shape and manifold analysis from unstructured data, eliminating the need for traditional operator selection, discretization, and eigensolvers. Grounded in optimal-approximation theory, we train a network to decompose an implicit approximation operator by minimizing the reconstruction error in the learned basis over a chosen distribution of probe functions. For suitable distributions, they can be seen as an approximation of the Laplacian operator and its eigendecomposition, which are fundamental in geometry processing. Furthermore, our method recovers in a unified manner not only the spectral basis, but also the implicit metric's sampling density and the eigenvalues of the underlying operator. Notably, our unsupervised method makes no assumption on the data manifold, such as meshing or manifold dimensionality, allowing it to scale to arbitrary datasets of any dimension. On point clouds lying on surfaces in 3D and high-dimensional image manifolds, our approach yields meaningful spectral bases, that can resemble those of the Laplacian, without explicit construction of an operator. By replacing the traditional operator selection, construction, and eigendecomposition with a learning-based approach, our framework offers a principled, data-driven alternative to conventional pipelines. This opens new possibilities in geometry processing for unstructured data, particularly in high-dimensional spaces.
Neural Spectral Methods: Self-supervised learning in the spectral domain
We present Neural Spectral Methods, a technique to solve parametric Partial Differential Equations (PDEs), grounded in classical spectral methods. Our method uses orthogonal bases to learn PDE solutions as mappings between spectral coefficients. In contrast to current machine learning approaches which enforce PDE constraints by minimizing the numerical quadrature of the residuals in the spatiotemporal domain, we leverage Parseval's identity and introduce a new training strategy through a spectral loss. Our spectral loss enables more efficient differentiation through the neural network, and substantially reduces training complexity. At inference time, the computational cost of our method remains constant, regardless of the spatiotemporal resolution of the domain. Our experimental results demonstrate that our method significantly outperforms previous machine learning approaches in terms of speed and accuracy by one to two orders of magnitude on multiple different problems. When compared to numerical solvers of the same accuracy, our method demonstrates a 10times increase in performance speed.
Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.
AppleCiDEr II: SpectraNet -- A Deep Learning Network for Spectroscopic Data
Time-domain surveys such as the Zwicky Transient Facility (ZTF) have opened a new frontier in the discovery and characterization of transients. While photometric light curves provide broad temporal coverage, spectroscopic observations remain crucial for physical interpretation and source classification. However, existing spectral analysis methods -- often reliant on template fitting or parametric models -- are limited in their ability to capture the complex and evolving spectra characteristic of such sources, which are sometimes only available at low resolution. In this work, we introduce SpectraNet, a deep convolutional neural network designed to learn robust representations of optical spectra from transients. Our model combines multi-scale convolution kernels and multi-scale pooling to extract features from preprocessed spectra in a hierarchical and interpretable manner. We train and validate SpectraNet on low-resolution time-series spectra obtained from the Spectral Energy Distribution Machine (SEDM) and other instruments, demonstrating state-of-the-art performance in classification. Furthermore, in redshift prediction tasks, SpectraNet achieves a root mean squared relative redshift error of 0.02, highlighting its effectiveness in precise regression tasks as well.
On the Characteristic polynomial of ABS Matrix and ABS-Energy of Some Graphs
For a graph G with n vertices and m edges, Lin et al. Lin define the atom--bond sum-connectivity (ABS) matrix of G such that the (i,j)^{th} entry is \[ 1 - \frac{2{d_i + d_j}} \] if vertex v_i is adjacent to the vertex v_j, and 0 otherwise. In this article, we determine the characteristic polynomial of the ABS matrix for certain specific classes of graphs. Furthermore, we compute the ABS eigenvalues and the ABS energy for these classes.
Manifold Diffusion Fields
We present Manifold Diffusion Fields (MDF), an approach to learn generative models of continuous functions defined over Riemannian manifolds. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. Empirical results on several datasets and manifolds show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models
Adapting large-scale pre-trained generative models in a parameter-efficient manner is gaining traction. Traditional methods like low rank adaptation achieve parameter efficiency by imposing constraints but may not be optimal for tasks requiring high representation capacity. We propose a novel spectrum-aware adaptation framework for generative models. Our method adjusts both singular values and their basis vectors of pretrained weights. Using the Kronecker product and efficient Stiefel optimizers, we achieve parameter-efficient adaptation of orthogonal matrices. We introduce Spectral Orthogonal Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity. Extensive evaluations on text-to-image diffusion models demonstrate SODA's effectiveness, offering a spectrum-aware alternative to existing fine-tuning methods.
Electronic properties, correlated topology and Green's function zeros
There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations.
Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
Cosmology with one galaxy?
Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star-formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2,000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allow our models to infer the value of Omega_{rm m}, at fixed Omega_{rm b}, with a sim10% precision, while no constraint can be placed on sigma_8. Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, zleq3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Omega_{rm m}. We believe that our results can be explained taking into account that changes in the value of Omega_{rm m}, or potentially Omega_{rm b}/Omega_{rm m}, affect the dark matter content of galaxies. That effect leaves a distinct signature in galaxy properties to the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.
GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.
A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection
CNN-based generative modelling has evolved to produce synthetic images indistinguishable from real images in the RGB pixel space. Recent works have observed that CNN-generated images share a systematic shortcoming in replicating high frequency Fourier spectrum decay attributes. Furthermore, these works have successfully exploited this systematic shortcoming to detect CNN-generated images reporting up to 99% accuracy across multiple state-of-the-art GAN models. In this work, we investigate the validity of assertions claiming that CNN-generated images are unable to achieve high frequency spectral decay consistency. We meticulously construct a counterexample space of high frequency spectral decay consistent CNN-generated images emerging from our handcrafted experiments using DCGAN, LSGAN, WGAN-GP and StarGAN, where we empirically show that this frequency discrepancy can be avoided by a minor architecture change in the last upsampling operation. We subsequently use images from this counterexample space to successfully bypass the recently proposed forensics detector which leverages on high frequency Fourier spectrum decay attributes for CNN-generated image detection. Through this study, we show that high frequency Fourier spectrum decay discrepancies are not inherent characteristics for existing CNN-based generative models--contrary to the belief of some existing work--, and such features are not robust to perform synthetic image detection. Our results prompt re-thinking of using high frequency Fourier spectrum decay attributes for CNN-generated image detection. Code and models are available at https://keshik6.github.io/Fourier-Discrepancies-CNN-Detection/
DC is all you need: describing ReLU from a signal processing standpoint
Non-linear activation functions are crucial in Convolutional Neural Networks. However, until now they have not been well described in the frequency domain. In this work, we study the spectral behavior of ReLU, a popular activation function. We use the ReLU's Taylor expansion to derive its frequency domain behavior. We demonstrate that ReLU introduces higher frequency oscillations in the signal and a constant DC component. Furthermore, we investigate the importance of this DC component, where we demonstrate that it helps the model extract meaningful features related to the input frequency content. We accompany our theoretical derivations with experiments and real-world examples. First, we numerically validate our frequency response model. Then we observe ReLU's spectral behavior on two example models and a real-world one. Finally, we experimentally investigate the role of the DC component introduced by ReLU in the CNN's representations. Our results indicate that the DC helps to converge to a weight configuration that is close to the initial random weights.
GEWDiff: Geometric Enhanced Wavelet-based Diffusion Model for Hyperspectral Image Super-resolution
Improving the quality of hyperspectral images (HSIs), such as through super-resolution, is a crucial research area. However, generative modeling for HSIs presents several challenges. Due to their high spectral dimensionality, HSIs are too memory-intensive for direct input into conventional diffusion models. Furthermore, general generative models lack an understanding of the topological and geometric structures of ground objects in remote sensing imagery. In addition, most diffusion models optimize loss functions at the noise level, leading to a non-intuitive convergence behavior and suboptimal generation quality for complex data. To address these challenges, we propose a Geometric Enhanced Wavelet-based Diffusion Model (GEWDiff), a novel framework for reconstructing hyperspectral images at 4-times super-resolution. A wavelet-based encoder-decoder is introduced that efficiently compresses HSIs into a latent space while preserving spectral-spatial information. To avoid distortion during generation, we incorporate a geometry-enhanced diffusion process that preserves the geometric features. Furthermore, a multi-level loss function was designed to guide the diffusion process, promoting stable convergence and improved reconstruction fidelity. Our model demonstrated state-of-the-art results across multiple dimensions, including fidelity, spectral accuracy, visual realism, and clarity.
SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multi-temporal dataset designed to pretrain hyperspectral foundation models leveraging data from the Environmental Mapping and Analysis Program (EnMAP). SpectralEarth comprises 538,974 image patches covering 415,153 unique locations from more than 11,636 globally distributed EnMAP scenes spanning two years of archive. Additionally, 17.5% of these locations include multiple timestamps, enabling multi-temporal HSI analysis. Utilizing state-of-the-art self-supervised learning (SSL) algorithms, we pretrain a series of foundation models on SpectralEarth. We integrate a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct four downstream datasets for land-cover and crop-type mapping, providing benchmarks for model evaluation. Experimental results support the versatility of our models, showcasing their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning. The dataset, models, and source code will be made publicly available.
A Spectral Condition for Feature Learning
The push to train ever larger neural networks has motivated the study of initialization and training at large network width. A key challenge is to scale training so that a network's internal representations evolve nontrivially at all widths, a process known as feature learning. Here, we show that feature learning is achieved by scaling the spectral norm of weight matrices and their updates like texttt{fan-out/fan-in}, in contrast to widely used but heuristic scalings based on Frobenius norm and entry size. Our spectral scaling analysis also leads to an elementary derivation of maximal update parametrization. All in all, we aim to provide the reader with a solid conceptual understanding of feature learning in neural networks.
On the Stability of Expressive Positional Encodings for Graph Neural Networks
Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.
Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights from winning the Ariel Data Challenge 2023 using Normalizing Flows
Advancements in space telescopes have opened new avenues for gathering vast amounts of data on exoplanet atmosphere spectra. However, accurately extracting chemical and physical properties from these spectra poses significant challenges due to the non-linear nature of the underlying physics. This paper presents novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023, where one of the models secured the top position among 293 competitors. Leveraging Normalizing Flows, our models predict the posterior probability distribution of atmospheric parameters under different atmospheric assumptions. Moreover, we introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge. These findings highlight the need to reevaluate the evaluation metric and prompt further exploration of more efficient and accurate approaches for exoplanet atmosphere spectra analysis. Finally, we present recommendations to enhance the challenge and models, providing valuable insights for future applications on real observational data. These advancements pave the way for more effective and timely analysis of exoplanet atmospheric properties, advancing our understanding of these distant worlds.
First Light And Reionisation Epoch Simulations (FLARES) VI: The colour evolution of galaxies z=5-15
With its exquisite sensitivity, wavelength coverage, and spatial and spectral resolution, the James Webb Space Telescope is poised to revolutionise our view of the distant, high-redshift (z>5) Universe. While Webb's spectroscopic observations will be transformative for the field, photometric observations play a key role in identifying distant objects and providing more comprehensive samples than accessible to spectroscopy alone. In addition to identifying objects, photometric observations can also be used to infer physical properties and thus be used to constrain galaxy formation models. However, inferred physical properties from broadband photometric observations, particularly in the absence of spectroscopic redshifts, often have large uncertainties. With the development of new tools for forward modelling simulations it is now routinely possible to predict observational quantities, enabling a direct comparison with observations. With this in mind, in this work, we make predictions for the colour evolution of galaxies at z=5-15 using the FLARES: First Light And Reionisation Epoch Simulations cosmological hydrodynamical simulation suite. We predict a complex evolution, driven predominantly by strong nebular line emission passing through individual bands. These predictions are in good agreement with existing constraints from Hubble and Spitzer as well as some of the first results from Webb. We also contrast our predictions with other models in the literature: while the general trends are similar we find key differences, particularly in the strength of features associated with strong nebular line emission. This suggests photometric observations alone should provide useful discriminating power between different models.
Predicting Many Properties of a Quantum System from Very Few Measurements
Predicting properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a classical shadow, can be used to predict many different properties: order log M measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size, and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods.
Zero Sound from Holography
Quantum liquids are characterized by the distinctive properties such as the low temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by L. D. Landau in 1957 and subsequently observed in liquid He-3. In this paper, we ask a question whether such a characteristic behavior is present in theories with holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in AdS_{p+1} space. An example of such a system is the N=4 SU(N_c) supersymmetric Yang-Mills theory with N_f massless N=2 hypermultiplets at strong coupling, finite baryon number density, and low temperature. We find that these systems exhibit a zero sound mode despite having a non-Fermi liquid type behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquids.
From black holes to strange metals
Since the mid-eighties there has been an accumulation of metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory. Examples of these so-called non-Fermi liquids include the strange metal phase of high transition temperature cuprates, and heavy fermion systems near a quantum phase transition. We report on a class of non-Fermi liquids discovered using gauge/gravity duality. The low energy behavior of these non-Fermi liquids is shown to be governed by a nontrivial infrared (IR) fixed point which exhibits nonanalytic scaling behavior only in the temporal direction. Within this class we find examples whose single-particle spectral function and transport behavior resemble those of strange metals. In particular, the contribution from the Fermi surface to the conductivity is inversely proportional to the temperature. In our treatment these properties can be understood as being controlled by the scaling dimension of the fermion operator in the emergent IR fixed point.
Indirect measurement of atomic magneto-optical rotation via Hilbert transform
The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime.
SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
Normalizable fermion modes in a holographic superconductor
We consider fermions in a zero-temperature superconducting anti-de Sitter domain wall solution and find continuous bands of normal modes. These bands can be either partially filled or totally empty and gapped. We present a semi-classical argument which approximately captures the main features of the normal mode spectrum.
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
Fourier Neural Operators (FNOs) have proven to be an efficient and effective method for resolution-independent operator learning in a broad variety of application areas across scientific machine learning. A key reason for their success is their ability to accurately model long-range dependencies in spatio-temporal data by learning global convolutions in a computationally efficient manner. To this end, FNOs rely on the discrete Fourier transform (DFT), however, DFTs cause visual and spectral artifacts as well as pronounced dissipation when learning operators in spherical coordinates since they incorrectly assume a flat geometry. To overcome this limitation, we generalize FNOs on the sphere, introducing Spherical FNOs (SFNOs) for learning operators on spherical geometries. We apply SFNOs to forecasting atmospheric dynamics, and demonstrate stable auto\-regressive rollouts for a year of simulated time (1,460 steps), while retaining physically plausible dynamics. The SFNO has important implications for machine learning-based simulation of climate dynamics that could eventually help accelerate our response to climate change.
Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves
Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks.
Quasinormal modes in two-photon autocorrelation and the geometric-optics approximation
In this work, we study the black hole light echoes in terms of the two-photon autocorrelation and explore their connection with the quasinormal modes. It is shown that the above time-domain phenomenon can be analyzed by utilizing the well-known frequency-domain relations between the quasinormal modes and characteristic parameters of null geodesics. We found that the time-domain correlator, obtained by the inverse Fourier transform, naturally acquires the echo feature, which can be attributed to a collective effect of the asymptotic poles through a weighted summation of the squared modulus of the relevant Green's functions. Specifically, the contour integral leads to a summation taking over both the overtone index and angular momentum. Moreover, the dominant contributions to the light echoes are from those in the eikonal limit, consistent with the existing findings using the geometric-optics arguments. For the Schwarzschild black holes, we demonstrate the results numerically by considering a transient spherical light source. Also, for the Kerr spacetimes, we point out a potential difference between the resulting light echoes using the geometric-optics approach and those obtained by the black hole perturbation theory. Possible astrophysical implications of the present study are addressed.
The effect of data encoding on the expressive power of variational quantum machine learning models
Quantum computers can be used for supervised learning by treating parametrised quantum circuits as models that map data inputs to predictions. While a lot of work has been done to investigate practical implications of this approach, many important theoretical properties of these models remain unknown. Here we investigate how the strategy with which data is encoded into the model influences the expressive power of parametrised quantum circuits as function approximators. We show that one can naturally write a quantum model as a partial Fourier series in the data, where the accessible frequencies are determined by the nature of the data encoding gates in the circuit. By repeating simple data encoding gates multiple times, quantum models can access increasingly rich frequency spectra. We show that there exist quantum models which can realise all possible sets of Fourier coefficients, and therefore, if the accessible frequency spectrum is asymptotically rich enough, such models are universal function approximators.
Any-Resolution AI-Generated Image Detection by Spectral Learning
Recent works have established that AI models introduce spectral artifacts into generated images and propose approaches for learning to capture them using labeled data. However, the significant differences in such artifacts among different generative models hinder these approaches from generalizing to generators not seen during training. In this work, we build upon the key idea that the spectral distribution of real images constitutes both an invariant and highly discriminative pattern for AI-generated image detection. To model this under a self-supervised setup, we employ masked spectral learning using the pretext task of frequency reconstruction. Since generated images constitute out-of-distribution samples for this model, we propose spectral reconstruction similarity to capture this divergence. Moreover, we introduce spectral context attention, which enables our approach to efficiently capture subtle spectral inconsistencies in images of any resolution. Our spectral AI-generated image detection approach (SPAI) achieves a 5.5% absolute improvement in AUC over the previous state-of-the-art across 13 recent generative approaches, while exhibiting robustness against common online perturbations. Code is available on https://mever-team.github.io/spai.
A simple model for strange metallic behavior
A refined semi-holographic non-Fermi liquid model, in which carrier electrons hybridize with operators of a holographic critical sector, has been proposed recently for strange metallic behavior. The model, consistently with effective theory approach, has two couplings whose ratio is related to the doping. We explain the origin of the linear-in-T resistivity and strange metallic behavior as a consequence of the emergence of a universal form of the spectral function which is independent of the model parameters when the ratio of the two couplings take optimal values determined only by the critical exponent. This universal form fits well with photoemission data of copper oxide samples for under/optimal/over-doping with a fixed exponent over a wide range of temperatures. We further obtain a refined Planckian dissipation scenario in which the scattering time τ= f cdot hbar /(k_B T), with f being O(1) at strong coupling, but O(10) at weak coupling.
Scaling Spherical CNNs
Spherical CNNs generalize CNNs to functions on the sphere, by using spherical convolutions as the main linear operation. The most accurate and efficient way to compute spherical convolutions is in the spectral domain (via the convolution theorem), which is still costlier than the usual planar convolutions. For this reason, applications of spherical CNNs have so far been limited to small problems that can be approached with low model capacity. In this work, we show how spherical CNNs can be scaled for much larger problems. To achieve this, we make critical improvements including novel variants of common model components, an implementation of core operations to exploit hardware accelerator characteristics, and application-specific input representations that exploit the properties of our model. Experiments show our larger spherical CNNs reach state-of-the-art on several targets of the QM9 molecular benchmark, which was previously dominated by equivariant graph neural networks, and achieve competitive performance on multiple weather forecasting tasks. Our code is available at https://github.com/google-research/spherical-cnn.
Understanding Gradient Descent through the Training Jacobian
We examine the geometry of neural network training using the Jacobian of trained network parameters with respect to their initial values. Our analysis reveals low-dimensional structure in the training process which is dependent on the input data but largely independent of the labels. We find that the singular value spectrum of the Jacobian matrix consists of three distinctive regions: a "chaotic" region of values orders of magnitude greater than one, a large "bulk" region of values extremely close to one, and a "stable" region of values less than one. Along each bulk direction, the left and right singular vectors are nearly identical, indicating that perturbations to the initialization are carried through training almost unchanged. These perturbations have virtually no effect on the network's output in-distribution, yet do have an effect far out-of-distribution. While the Jacobian applies only locally around a single initialization, we find substantial overlap in bulk subspaces for different random seeds. Our code is available at https://github.com/EleutherAI/training-jacobian
HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion Models
Despite the proven significance of hyperspectral images (HSIs) in performing various computer vision tasks, its potential is adversely affected by the low-resolution (LR) property in the spatial domain, resulting from multiple physical factors. Inspired by recent advancements in deep generative models, we propose an HSI Super-resolution (SR) approach with Conditional Diffusion Models (HSR-Diff) that merges a high-resolution (HR) multispectral image (MSI) with the corresponding LR-HSI. HSR-Diff generates an HR-HSI via repeated refinement, in which the HR-HSI is initialized with pure Gaussian noise and iteratively refined. At each iteration, the noise is removed with a Conditional Denoising Transformer (CDF ormer) that is trained on denoising at different noise levels, conditioned on the hierarchical feature maps of HR-MSI and LR-HSI. In addition, a progressive learning strategy is employed to exploit the global information of full-resolution images. Systematic experiments have been conducted on four public datasets, demonstrating that HSR-Diff outperforms state-of-the-art methods.
Hyperspectral Image Dataset for Individual Penguin Identification
Remote individual animal identification is important for food safety, sport, and animal conservation. Numerous existing remote individual animal identification studies have focused on RGB images. In this paper, we tackle individual penguin identification using hyperspectral (HS) images. To the best of our knowledge, it is the first work to analyze spectral differences between penguin individuals using an HS camera. We have constructed a novel penguin HS image dataset, including 990 hyperspectral images of 27 penguins. We experimentally demonstrate that the spectral information of HS image pixels can be used for individual penguin identification. The experimental results show the effectiveness of using HS images for individual penguin identification. The dataset and source code are available here: https://033labcodes.github.io/igrass24_penguin/
SoundCam: A Dataset for Finding Humans Using Room Acoustics
A room's acoustic properties are a product of the room's geometry, the objects within the room, and their specific positions. A room's acoustic properties can be characterized by its impulse response (RIR) between a source and listener location, or roughly inferred from recordings of natural signals present in the room. Variations in the positions of objects in a room can effect measurable changes in the room's acoustic properties, as characterized by the RIR. Existing datasets of RIRs either do not systematically vary positions of objects in an environment, or they consist of only simulated RIRs. We present SoundCam, the largest dataset of unique RIRs from in-the-wild rooms publicly released to date. It includes 5,000 10-channel real-world measurements of room impulse responses and 2,000 10-channel recordings of music in three different rooms, including a controlled acoustic lab, an in-the-wild living room, and a conference room, with different humans in positions throughout each room. We show that these measurements can be used for interesting tasks, such as detecting and identifying humans, and tracking their positions.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Relative Oscillation Theory for Jacobi Matrices Extended
We present a comprehensive treatment of relative oscillation theory for finite Jacobi matrices. We show that the difference of the number of eigenvalues of two Jacobi matrices in an interval equals the number of weighted sign-changes of the Wronskian of suitable solutions of the two underlying difference equations. Until now only the case of perturbations of the main diagonal was known. We extend the known results to arbitrary perturbations, allow any (half-)open and closed spectral intervals, simplify the proof, and establish the comparison theorem.
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin.
Defects of Convolutional Decoder Networks in Frequency Representation
In this paper, we prove representation bottlenecks of a cascaded convolutional decoder network, considering the capacity of representing different frequency components of an input sample. We conduct the discrete Fourier transform on each channel of the feature map in an intermediate layer of the decoder network. Then, we introduce the rule of the forward propagation of such intermediate-layer spectrum maps, which is equivalent to the forward propagation of feature maps through a convolutional layer. Based on this, we find that each frequency component in the spectrum map is forward propagated independently with other frequency components. Furthermore, we prove two bottlenecks in representing feature spectrums. First, we prove that the convolution operation, the zero-padding operation, and a set of other settings all make a convolutional decoder network more likely to weaken high-frequency components. Second, we prove that the upsampling operation generates a feature spectrum, in which strong signals repetitively appears at certain frequencies.
SpectralGPT: Spectral Foundation Model
The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT). Compared to existing foundation models, SpectralGPT 1) accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data; 2) leverages 3D token generation for spatial-spectral coupling; 3) captures spectrally sequential patterns via multi-target reconstruction; 4) trains on one million spectral RS images, yielding models with over 600 million parameters. Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience across four downstream tasks: single/multi-label scene classification, semantic segmentation, and change detection.
Accurate Machine Learning Atmospheric Retrieval via a Neural Network Surrogate Model for Radiative Transfer
Atmospheric retrieval determines the properties of an atmosphere based on its measured spectrum. The low signal-to-noise ratio of exoplanet observations require a Bayesian approach to determine posterior probability distributions of each model parameter, given observed spectra. This inference is computationally expensive, as it requires many executions of a costly radiative transfer (RT) simulation for each set of sampled model parameters. Machine learning (ML) has recently been shown to provide a significant reduction in runtime for retrievals, mainly by training inverse ML models that predict parameter distributions, given observed spectra, albeit with reduced posterior accuracy. Here we present a novel approach to retrieval by training a forward ML surrogate model that predicts spectra given model parameters, providing a fast approximate RT simulation that can be used in a conventional Bayesian retrieval framework without significant loss of accuracy. We demonstrate our method on the emission spectrum of HD 189733 b and find good agreement with a traditional retrieval from the Bayesian Atmospheric Radiative Transfer (BART) code (Bhattacharyya coefficients of 0.9843--0.9972, with a mean of 0.9925, between 1D marginalized posteriors). This accuracy comes while still offering significant speed enhancements over traditional RT, albeit not as much as ML methods with lower posterior accuracy. Our method is ~9x faster per parallel chain than BART when run on an AMD EPYC 7402P central processing unit (CPU). Neural-network computation using an NVIDIA Titan Xp graphics processing unit is 90--180x faster per chain than BART on that CPU.
Diffusion Probabilistic Model Made Slim
Despite the recent visually-pleasing results achieved, the massive computational cost has been a long-standing flaw for diffusion probabilistic models (DPMs), which, in turn, greatly limits their applications on resource-limited platforms. Prior methods towards efficient DPM, however, have largely focused on accelerating the testing yet overlooked their huge complexity and sizes. In this paper, we make a dedicated attempt to lighten DPM while striving to preserve its favourable performance. We start by training a small-sized latent diffusion model (LDM) from scratch, but observe a significant fidelity drop in the synthetic images. Through a thorough assessment, we find that DPM is intrinsically biased against high-frequency generation, and learns to recover different frequency components at different time-steps. These properties make compact networks unable to represent frequency dynamics with accurate high-frequency estimation. Towards this end, we introduce a customized design for slim DPM, which we term as Spectral Diffusion (SD), for light-weight image synthesis. SD incorporates wavelet gating in its architecture to enable frequency dynamic feature extraction at every reverse steps, and conducts spectrum-aware distillation to promote high-frequency recovery by inverse weighting the objective based on spectrum magni tudes. Experimental results demonstrate that, SD achieves 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks while retaining competitive image fidelity.
Efficiently predicting high resolution mass spectra with graph neural networks
Identifying a small molecule from its mass spectrum is the primary open problem in computational metabolomics. This is typically cast as information retrieval: an unknown spectrum is matched against spectra predicted computationally from a large database of chemical structures. However, current approaches to spectrum prediction model the output space in ways that force a tradeoff between capturing high resolution mass information and tractable learning. We resolve this tradeoff by casting spectrum prediction as a mapping from an input molecular graph to a probability distribution over molecular formulas. We discover that a large corpus of mass spectra can be closely approximated using a fixed vocabulary constituting only 2% of all observed formulas. This enables efficient spectrum prediction using an architecture similar to graph classification - GrAFF-MS - achieving significantly lower prediction error and orders-of-magnitude faster runtime than state-of-the-art methods.
Invariant subspaces for finite index shifts in Hardy spaces and the invariant subspace problem for finite defect operators
Let mathbb H be the finite direct sums of H^2(mathbb D). In this paper, we give a characterization of the closed subspaces of mathbb H which are invariant under the shift, thus obtaining a concrete Beurling-type theorem for the finite index shift. This characterization presents any such a subspace as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant subspace of H^2(mathbb D) under ``determinantal operators'' from mathbb H to H^2(mathbb D), that is, continuous linear operators which intertwine the shifts and appear as determinants of matrices with entries given by bounded holomorphic functions. With simple algebraic manipulations we provide a direct proof that every invariant closed subspace of codimension at least two sits into a non-trivial closed invariant subspace. As a consequence every bounded linear operator with finite defect has a nontrivial closed invariant subspace.
