Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn Investigating the Conservative Property of Score-Based Generative Models
Existing Score-Based Models (SBMs) can be categorized into constrained SBMs (CSBMs) or unconstrained SBMs (USBMs) according to their parameterization approaches. CSBMs model probability density functions as Boltzmann distributions, and assign their predictions as the negative gradients of some scalar-valued energy functions. On the other hand, USBMs employ flexible architectures capable of directly estimating scores without the need to explicitly model energy functions. In this paper, we demonstrate that the architectural constraints of CSBMs may limit their modeling ability. In addition, we show that USBMs' inability to preserve the property of conservativeness may lead to degraded performance in practice. To address the above issues, we propose Quasi-Conservative Score-Based Models (QCSBMs) for keeping the advantages of both CSBMs and USBMs. Our theoretical derivations demonstrate that the training objective of QCSBMs can be efficiently integrated into the training processes by leveraging the Hutchinson's trace estimator. In addition, our experimental results on the CIFAR-10, CIFAR-100, ImageNet, and SVHN datasets validate the effectiveness of QCSBMs. Finally, we justify the advantage of QCSBMs using an example of a one-layered autoencoder.
Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs
Generating realistic time series data is important for many engineering and scientific applications. Existing work tackles this problem using generative adversarial networks (GANs). However, GANs are often unstable during training, and they can suffer from mode collapse. While variational autoencoders (VAEs) are known to be more robust to these issues, they are (surprisingly) less often considered for time series generation. In this work, we introduce Koopman VAE (KVAE), a new generative framework that is based on a novel design for the model prior, and that can be optimized for either regular and irregular training data. Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map. Our approach enhances generative modeling with two desired features: (i) incorporating domain knowledge can be achieved by leverageing spectral tools that prescribe constraints on the eigenvalues of the linear map; and (ii) studying the qualitative behavior and stablity of the system can be performed using tools from dynamical systems theory. Our results show that KVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks. Whether trained on regular or irregular data, KVAE generates time series that improve both discriminative and predictive metrics. We also present visual evidence suggesting that KVAE learns probability density functions that better approximate empirical ground truth distributions.
Transforming Simulation to Data Without Pairing
We explore a generative machine learning-based approach for estimating multi-dimensional probability density functions (PDFs) in a target sample using a statistically independent but related control sample - a common challenge in particle physics data analysis. The generative model must accurately reproduce individual observable distributions while preserving the correlations between them, based on the input multidimensional distribution from the control sample. Here we present a conditional normalizing flow model (CNF) based on a chain of bijectors which learns to transform unpaired simulation events to data events. We assess the performance of the CNF model in the context of LHC Higgs to diphoton analysis, where we use the CNF model to convert a Monte Carlo diphoton sample to one that models data. We show that the CNF model can accurately model complex data distributions and correlations. We also leverage the recently popularized Modified Differential Multiplier Method (MDMM) to improve the convergence of our model and assign physical meaning to usually arbitrary loss-function parameters.
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence
Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.
Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions
To measure the difference between two probability distributions, referred to as the source and target, respectively, we exploit both the chain rule and Bayes' theorem to construct conditional transport (CT), which is constituted by both a forward component and a backward one. The forward CT is the expected cost of moving a source data point to a target one, with their joint distribution defined by the product of the source probability density function (PDF) and a source-dependent conditional distribution, which is related to the target PDF via Bayes' theorem. The backward CT is defined by reversing the direction. The CT cost can be approximated by replacing the source and target PDFs with their discrete empirical distributions supported on mini-batches, making it amenable to implicit distributions and stochastic gradient descent-based optimization. When applied to train a generative model, CT is shown to strike a good balance between mode-covering and mode-seeking behaviors and strongly resist mode collapse. On a wide variety of benchmark datasets for generative modeling, substituting the default statistical distance of an existing generative adversarial network with CT is shown to consistently improve the performance. PyTorch code is provided.
Short-Term Evolution and Risks of Debris Cloud Stemming from Collisions in Geostationary Orbit
The increasing population of objects in geostationary orbit has raised concerns about the potential risks posed by debris clouds resulting from fragmentation. The short-term evolution and associated hazards of debris generated by collisions in the geostationary region is investigated in this study. The initial distribution of two debris clouds is modeled using a single probability density function.The combined distribution of the evolved clouds is determined by solving boundary value problems.The risks associated with these debris clouds are evaluated by calculating the instantaneous impact rate and cumulative collision probability.The probability of collisions with millimeter-sized fragments may increase to 1% within 36 hours, while the probability of collisions with fragments 5 cm or larger is approximately 10^{-5}.These findings underscore the vulnerability of the geostationary region to space traffic accidents.
KAN-powered large-target detection for automotive radar
This paper presents a novel radar signal detection pipeline focused on detecting large targets such as cars and SUVs. Traditional methods, such as Ordered-Statistic Constant False Alarm Rate (OS-CFAR), commonly used in automotive radar, are designed for point or isotropic target models. These may not adequately capture the Range-Doppler (RD) scattering patterns of larger targets, especially in high-resolution radar systems. Additional modules such as association and tracking are necessary to refine and consolidate the detections over multiple dwells. To address these limitations, we propose a detection technique based on the probability density function (pdf) of RD segments, leveraging the Kolmogorov-Arnold neural network (KAN) to learn the data and generate interpretable symbolic expressions for binary hypotheses. Beside the Monte-Carlo study showing better performance for the proposed KAN expression over OS-CFAR, it is shown to exhibit a probability of detection (PD) of 96% when transfer learned with field data. The false alarm rate (PFA) is comparable with OS-CFAR designed with PFA = 10^{-6}. Additionally, the study also examines impact of the number of pdf bins representing RD segment on performance of the KAN-based detection.
Image Copy Detection for Diffusion Models
Images produced by diffusion models are increasingly popular in digital artwork and visual marketing. However, such generated images might replicate content from existing ones and pose the challenge of content originality. Existing Image Copy Detection (ICD) models, though accurate in detecting hand-crafted replicas, overlook the challenge from diffusion models. This motivates us to introduce ICDiff, the first ICD specialized for diffusion models. To this end, we construct a Diffusion-Replication (D-Rep) dataset and correspondingly propose a novel deep embedding method. D-Rep uses a state-of-the-art diffusion model (Stable Diffusion V1.5) to generate 40, 000 image-replica pairs, which are manually annotated into 6 replication levels ranging from 0 (no replication) to 5 (total replication). Our method, PDF-Embedding, transforms the replication level of each image-replica pair into a probability density function (PDF) as the supervision signal. The intuition is that the probability of neighboring replication levels should be continuous and smooth. Experimental results show that PDF-Embedding surpasses protocol-driven methods and non-PDF choices on the D-Rep test set. Moreover, by utilizing PDF-Embedding, we find that the replication ratios of well-known diffusion models against an open-source gallery range from 10% to 20%.
FasterDiT: Towards Faster Diffusion Transformers Training without Architecture Modification
Diffusion Transformers (DiT) have attracted significant attention in research. However, they suffer from a slow convergence rate. In this paper, we aim to accelerate DiT training without any architectural modification. We identify the following issues in the training process: firstly, certain training strategies do not consistently perform well across different data. Secondly, the effectiveness of supervision at specific timesteps is limited. In response, we propose the following contributions: (1) We introduce a new perspective for interpreting the failure of the strategies. Specifically, we slightly extend the definition of Signal-to-Noise Ratio (SNR) and suggest observing the Probability Density Function (PDF) of SNR to understand the essence of the data robustness of the strategy. (2) We conduct numerous experiments and report over one hundred experimental results to empirically summarize a unified accelerating strategy from the perspective of PDF. (3) We develop a new supervision method that further accelerates the training process of DiT. Based on them, we propose FasterDiT, an exceedingly simple and practicable design strategy. With few lines of code modifications, it achieves 2.30 FID on ImageNet 256 resolution at 1000k iterations, which is comparable to DiT (2.27 FID) but 7 times faster in training.
Stochastic Process Learning via Operator Flow Matching
Expanding on neural operators, we propose a novel framework for stochastic process learning across arbitrary domains. In particular, we develop operator flow matching (OFM) for learning stochastic process priors on function spaces. OFM provides the probability density of the values of any collection of points and enables mathematically tractable functional regression at new points with mean and density estimation. Our method outperforms state-of-the-art models in stochastic process learning, functional regression, and prior learning.
Multimodal Atmospheric Super-Resolution With Deep Generative Models
Score-based diffusion modeling is a generative machine learning algorithm that can be used to sample from complex distributions. They achieve this by learning a score function, i.e., the gradient of the log-probability density of the data, and reversing a noising process using the same. Once trained, score-based diffusion models not only generate new samples but also enable zero-shot conditioning of the generated samples on observed data. This promises a novel paradigm for data and model fusion, wherein the implicitly learned distributions of pretrained score-based diffusion models can be updated given the availability of online data in a Bayesian formulation. In this article, we apply such a concept to the super-resolution of a high-dimensional dynamical system, given the real-time availability of low-resolution and experimentally observed sparse sensor measurements from multimodal data. Additional analysis on how score-based sampling can be used for uncertainty estimates is also provided. Our experiments are performed for a super-resolution task that generates the ERA5 atmospheric dataset given sparse observations from a coarse-grained representation of the same and/or from unstructured experimental observations of the IGRA radiosonde dataset. We demonstrate accurate recovery of the high dimensional state given multiple sources of low-fidelity measurements. We also discover that the generative model can balance the influence of multiple dataset modalities during spatiotemporal reconstructions.
