Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeX-FACT: A New Benchmark Dataset for Multilingual Fact Checking
In this work, we introduce X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing real-world claims. The dataset contains short statements in 25 languages and is labeled for veracity by expert fact-checkers. The dataset includes a multilingual evaluation benchmark that measures both out-of-domain generalization, and zero-shot capabilities of the multilingual models. Using state-of-the-art multilingual transformer-based models, we develop several automated fact-checking models that, along with textual claims, make use of additional metadata and evidence from news stories retrieved using a search engine. Empirically, our best model attains an F-score of around 40%, suggesting that our dataset is a challenging benchmark for evaluation of multilingual fact-checking models.
mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as speech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark
Document retrieval is an important task for search and Retrieval-Augmented Generation (RAG) applications. Large Language Models (LLMs) have contributed to improving the accuracy of text-based document retrieval. However, documents with complex layout and visual elements like tables, charts and infographics are not perfectly represented in textual format. Recently, image-based document retrieval pipelines have become popular, which use visual large language models (VLMs) to retrieve relevant page images given a query. Current evaluation benchmarks on visual document retrieval are limited, as they primarily focus only English language, rely on synthetically generated questions and offer a small corpus size. Therefore, we introduce MIRACL-VISION, a multilingual visual document retrieval evaluation benchmark. MIRACL-VISION covers 18 languages, and is an extension of the MIRACL dataset, a popular benchmark to evaluate text-based multilingual retrieval pipelines. MIRACL was built using a human-intensive annotation process to generate high-quality questions. In order to reduce MIRACL-VISION corpus size to make evaluation more compute friendly while keeping the datasets challenging, we have designed a method for eliminating the "easy" negatives from the corpus. We conducted extensive experiments comparing MIRACL-VISION with other benchmarks, using popular public text and image models. We observe a gap in state-of-the-art VLM-based embedding models on multilingual capabilities, with up to 59.7% lower retrieval accuracy than a text-based retrieval models. Even for the English language, the visual models retrieval accuracy is 12.1% lower compared to text-based models. MIRACL-VISION is a challenging, representative, multilingual evaluation benchmark for visual retrieval pipelines and will help the community build robust models for document retrieval.
HPLT 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono- and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models
We present an ongoing initiative to provide open, very large, high-quality, and richly annotated textual datasets for almost 200 languages. At 30 trillion tokens, this is likely the largest generally available multilingual collection of LLM pre-training data. These datasets are derived from web crawls from different sources and accompanied with a complete, open-source pipeline for document selection from web archives, text extraction from HTML, language identification for noisy texts, exact and near-deduplication, annotation with, among others, register labels, text quality estimates, and personally identifiable information; and final selection and filtering. We report on data quality probes through contrastive and analytical statistics, through manual inspection of samples for 24 languages, and through end-to-end evaluation of various language model architectures trained on this data. For multilingual LLM evaluation, we provide a comprehensive collection of benchmarks for nine European languages, with special emphasis on natively created tasks, mechanisms to mitigate prompt sensitivity, and refined normalization and aggregation of scores. Additionally, we train and evaluate a family of 57 monolingual encoder-decoder models, as well as a handful of monolingual GPT-like reference models. Besides the monolingual data and models, we also present a very large collection of parallel texts automatically mined from this data, together with a novel parallel corpus synthesized via machine translation.
Multilingual Large Language Models: A Systematic Survey
This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.
BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges. In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral's superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.
MLQA: Evaluating Cross-lingual Extractive Question Answering
Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making training QA systems in other languages challenging. An alternative to building large monolingual training datasets is to develop cross-lingual systems which can transfer to a target language without requiring training data in that language. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, namely English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. It consists of over 12K QA instances in English and 5K in each other language, with each QA instance being parallel between 4 languages on average. MLQA is built using a novel alignment context strategy on Wikipedia articles, and serves as a cross-lingual extension to existing extractive QA datasets. We evaluate current state-of-the-art cross-lingual representations on MLQA, and also provide machine-translation-based baselines. In all cases, transfer results are shown to be significantly behind training-language performance.
xGQA: Cross-Lingual Visual Question Answering
Recent advances in multimodal vision and language modeling have predominantly focused on the English language, mostly due to the lack of multilingual multimodal datasets to steer modeling efforts. In this work, we address this gap and provide xGQA, a new multilingual evaluation benchmark for the visual question answering task. We extend the established English GQA dataset to 7 typologically diverse languages, enabling us to detect and explore crucial challenges in cross-lingual visual question answering. We further propose new adapter-based approaches to adapt multimodal transformer-based models to become multilingual, and -- vice versa -- multilingual models to become multimodal. Our proposed methods outperform current state-of-the-art multilingual multimodal models (e.g., M3P) in zero-shot cross-lingual settings, but the accuracy remains low across the board; a performance drop of around 38 accuracy points in target languages showcases the difficulty of zero-shot cross-lingual transfer for this task. Our results suggest that simple cross-lingual transfer of multimodal models yields latent multilingual multimodal misalignment, calling for more sophisticated methods for vision and multilingual language modeling.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large Language Models
Modern large language models (LLMs) should generally benefit individuals from various cultural backgrounds around the world. However, most recent advanced generative evaluation benchmarks tailed for LLMs mainly focus on English. To this end, we introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages. For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs, such as general knowledge, logical reasoning, and so on. Each question is rigorously verified by human annotators. Notably, to sufficiently reflect the compatibility of LLMs in different cultural backgrounds, we perform localization for each non-English language. Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar). Following AlpacaEval, we employ GPT-4 as the adjudicator to automatically score different model outputs, which is shown closely related to human evaluation. We evaluate several representative multilingual LLMs on the proposed OMGEval, which we believe will provide a valuable reference for the community to further understand and improve the multilingual capability of LLMs. OMGEval is available at https://github.com/blcuicall/OMGEval.
McEval: Massively Multilingual Code Evaluation
Code large language models (LLMs) have shown remarkable advances in code understanding, completion, and generation tasks. Programming benchmarks, comprised of a selection of code challenges and corresponding test cases, serve as a standard to evaluate the capability of different LLMs in such tasks. However, most existing benchmarks primarily focus on Python and are still restricted to a limited number of languages, where other languages are translated from the Python samples (e.g. MultiPL-E) degrading the data diversity. To further facilitate the research of code LLMs, we propose a massively multilingual code benchmark covering 40 programming languages (McEval) with 16K test samples, which substantially pushes the limits of code LLMs in multilingual scenarios. The benchmark contains challenging code completion, understanding, and generation evaluation tasks with finely curated massively multilingual instruction corpora McEval-Instruct. In addition, we introduce an effective multilingual coder mCoder trained on McEval-Instruct to support multilingual programming language generation. Extensive experimental results on McEval show that there is still a difficult journey between open-source models and closed-source LLMs (e.g. GPT-series models) in numerous languages. The instruction corpora, evaluation benchmark, and leaderboard are available at https://mceval.github.io/.
M-RewardBench: Evaluating Reward Models in Multilingual Settings
Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs' performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has produced substantial gains in reasoning, perception, and generative capability across language and vision. However, whether these advances yield commensurate improvements in safety remains unclear, in part due to fragmented evaluation practices limited to single modalities or threat models. In this report, we present an integrated safety evaluation of 7 frontier models: GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5. We evaluate each model across language, vision-language, and image generation settings using a unified protocol that integrates benchmark evaluation, adversarial evaluation, multilingual evaluation, and compliance evaluation. Aggregating our evaluations into safety leaderboards and model safety profiles across multiple evaluation modes reveals a sharply heterogeneous safety landscape. While GPT-5.2 demonstrates consistently strong and balanced safety performance across evaluations, other models exhibit pronounced trade-offs among benchmark safety, adversarial alignment, multilingual generalization, and regulatory compliance. Both language and vision-language modalities show significant vulnerability under adversarial evaluation, with all models degrading substantially despite strong results on standard benchmarks. Text-to-image models achieve relatively stronger alignment in regulated visual risk categories, yet remain brittle under adversarial or semantically ambiguous prompts. Overall, these results show that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation scheme, underscoring the need for standardized safety evaluations to accurately assess real-world risk and guide responsible model development and deployment.
MEDAL: A Framework for Benchmarking LLMs as Multilingual Open-Domain Chatbots and Dialogue Evaluators
As the capabilities of chatbots and their underlying LLMs continue to dramatically improve, evaluating their performance has increasingly become a major blocker to their further development. A major challenge is the available benchmarking datasets, which are largely static, outdated, and lacking in multilingual coverage, limiting their ability to capture subtle linguistic and cultural variations. This paper introduces MEDAL, an automated multi-agent framework for generating, evaluating, and curating more representative and diverse open-domain dialogue evaluation benchmarks. Our approach leverages several state-of-the-art LLMs to generate user-chatbot multilingual dialogues, conditioned on varied seed contexts. A strong LLM (GPT-4.1) is then used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences. Guided by this large-scale evaluation, we curate a new meta-evaluation multilingual benchmark and human-annotate samples with nuanced quality judgments. This benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues. We find that current LLMs struggle to detect nuanced issues, particularly those involving empathy and reasoning.
The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation
One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.
Low-Resource English-Tigrinya MT: Leveraging Multilingual Models, Custom Tokenizers, and Clean Evaluation Benchmarks
Despite advances in Neural Machine Translation (NMT), low-resource languages like Tigrinya remain underserved due to persistent challenges, including limited corpora, inadequate tokenization strategies, and the lack of standardized evaluation benchmarks. This paper investigates transfer learning techniques using multilingual pretrained models to enhance translation quality for morphologically rich, low-resource languages. We propose a refined approach that integrates language-specific tokenization, informed embedding initialization, and domain-adaptive fine-tuning. To enable rigorous assessment, we construct a high-quality, human-aligned English-Tigrinya evaluation dataset covering diverse domains. Experimental results demonstrate that transfer learning with a custom tokenizer substantially outperforms zero-shot baselines, with gains validated by BLEU, chrF, and qualitative human evaluation. Bonferroni correction is applied to ensure statistical significance across configurations. Error analysis reveals key limitations and informs targeted refinements. This study underscores the importance of linguistically aware modeling and reproducible benchmarks in bridging the performance gap for underrepresented languages. Resources are available at https://github.com/hailaykidu/MachineT_TigEng and https://huggingface.co/Hailay/MachineT_TigEng
MEGA: Multilingual Evaluation of Generative AI
Generative AI models have impressive performance on many Natural Language Processing tasks such as language understanding, reasoning and language generation. One of the most important questions that is being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative Large Language Models (LLMs) are restricted to English and it is unclear how capable these models are at understanding and generating other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 8 diverse tasks and 33 typologically diverse languages. We also compare the performance of generative LLMs to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and discuss some of the reasons why generative LLMs are currently not optimal for all languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.
MELA: Multilingual Evaluation of Linguistic Acceptability
In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability -- MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language -- Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks. Our data is available at https://github.com/sjtu-compling/MELA.
MEXA: Multilingual Evaluation of English-Centric LLMs via Cross-Lingual Alignment
English-centric large language models (LLMs) often show strong multilingual capabilities. However, the multilingual performance of these models remains unclear and is not thoroughly evaluated for many languages. Most benchmarks for multilinguality focus on classic NLP tasks, or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages the fact that English-centric LLMs use English as a kind of pivot language in their intermediate layers. It computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in other languages. We conduct studies using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves a statistically significant average Pearson correlation of 0.90 with three established downstream tasks across nine models and two parallel datasets. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://huggingface.co/spaces/cis-lmu/Mexa, Code: https://github.com/cisnlp/Mexa.
M-IFEval: Multilingual Instruction-Following Evaluation
Instruction following is a core capability of modern Large language models (LLMs), making evaluating this capability essential to understanding these models. The Instruction Following Evaluation (IFEval) benchmark from the literature does this using objective criteria, offering a measure of LLM performance without subjective AI or human judgement. However, it only includes English instructions, limiting its ability to assess LLMs in other languages. We propose the Multilingual Instruction Following Evaluation (M-IFEval) benchmark, expanding the evaluation to French, Japanese, and Spanish, with both general and language-specific instructions. Applying this benchmark to 8 state-of-the-art LLMs, we find that benchmark performance across languages and instruction types can vary widely, underscoring the importance of a multilingual benchmark for evaluating LLMs in a diverse cultural context.
Babel-ImageNet: Massively Multilingual Evaluation of Vision-and-Language Representations
Vision-and-language (VL) models with separate encoders for each modality (e.g., CLIP) have become the go-to models for zero-shot image classification and image-text retrieval. The bulk of the evaluation of these models is, however, performed with English text only: the costly creation of language-specific image-caption datasets has limited multilingual VL benchmarks to a handful of high-resource languages. In this work, we introduce Babel-ImageNet, a massively multilingual benchmark that offers (partial) translations of 1000 ImageNet labels to 92 languages, built without resorting to machine translation (MT) or requiring manual annotation. We instead automatically obtain reliable translations of ImageNext concepts by linking them -- via shared WordNet synsets -- to BabelNet, a massively multilingual lexico-semantic network. We evaluate 8 different publicly available multilingual CLIP models on zero-shot image classification (ZS-IC) for each of the 92 Babel-ImageNet languages, demonstrating a significant gap between English ImageNet performance and that of high-resource languages (e.g., German or Chinese), and an even bigger gap for low-resource languages (e.g., Sinhala or Lao). Crucially, we show that the models' ZS-IC performance on Babel-ImageNet highly correlates with their performance in image-text retrieval, validating that Babel-ImageNet is suitable for estimating the quality of the multilingual VL representation spaces for the vast majority of languages that lack gold image-text data. Finally, we show that the performance of multilingual CLIP for low-resource languages can be drastically improved via cheap, parameter-efficient language-specific training. We make our code and data publicly available: https://github.com/gregor-ge/Babel-ImageNet
Translation as a Scalable Proxy for Multilingual Evaluation
The rapid proliferation of LLMs has created a critical evaluation paradox: while LLMs claim multilingual proficiency, comprehensive non-machine-translated benchmarks exist for fewer than 30 languages, leaving >98% of the world's 7,000 languages in an empirical void. Traditional benchmark construction faces scaling challenges such as cost, scarcity of domain experts, and data contamination. We evaluate the validity of a simpler alternative: can translation quality alone indicate a model's broader multilingual capabilities? Through systematic evaluation of 14 models (1B-72B parameters) across 9 diverse benchmarks and 7 translation metrics, we find that translation performance is a good indicator of downstream task success (e.g., Phi-4, median Pearson r: MetricX = 0.89, xCOMET = 0.91, SSA-COMET = 0.87). These results suggest that the representational abilities supporting faithful translation overlap with those required for multilingual understanding. Translation quality, thus emerges as a strong, inexpensive first-pass proxy of multilingual performance, enabling a translation-first screening with targeted follow-up for specific tasks.
M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
SMTCE: A Social Media Text Classification Evaluation Benchmark and BERTology Models for Vietnamese
Text classification is a typical natural language processing or computational linguistics task with various interesting applications. As the number of users on social media platforms increases, data acceleration promotes emerging studies on Social Media Text Classification (SMTC) or social media text mining on these valuable resources. In contrast to English, Vietnamese, one of the low-resource languages, is still not concentrated on and exploited thoroughly. Inspired by the success of the GLUE, we introduce the Social Media Text Classification Evaluation (SMTCE) benchmark, as a collection of datasets and models across a diverse set of SMTC tasks. With the proposed benchmark, we implement and analyze the effectiveness of a variety of multilingual BERT-based models (mBERT, XLM-R, and DistilmBERT) and monolingual BERT-based models (PhoBERT, viBERT, vELECTRA, and viBERT4news) for tasks in the SMTCE benchmark. Monolingual models outperform multilingual models and achieve state-of-the-art results on all text classification tasks. It provides an objective assessment of multilingual and monolingual BERT-based models on the benchmark, which will benefit future studies about BERTology in the Vietnamese language.
MMAFFBen: A Multilingual and Multimodal Affective Analysis Benchmark for Evaluating LLMs and VLMs
Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.
RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
In this paper, we introduce an advanced Russian general language understanding evaluation benchmark -- RussianGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating models (https://github.com/RussianNLP/RussianSuperGLUE), and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the adapted diagnostic test set and offer the first steps to further expanding or assessing state-of-the-art models independently of language.
GlotEval: A Test Suite for Massively Multilingual Evaluation of Large Language Models
Large language models (LLMs) are advancing at an unprecedented pace globally, with regions increasingly adopting these models for applications in their primary language. Evaluation of these models in diverse linguistic environments, especially in low-resource languages, has become a major challenge for academia and industry. Existing evaluation frameworks are disproportionately focused on English and a handful of high-resource languages, thereby overlooking the realistic performance of LLMs in multilingual and lower-resource scenarios. To address this gap, we introduce GlotEval, a lightweight framework designed for massively multilingual evaluation. Supporting seven key tasks (machine translation, text classification, summarization, open-ended generation, reading comprehension, sequence labeling, and intrinsic evaluation), spanning over dozens to hundreds of languages, GlotEval highlights consistent multilingual benchmarking, language-specific prompt templates, and non-English-centric machine translation. This enables a precise diagnosis of model strengths and weaknesses in diverse linguistic contexts. A multilingual translation case study demonstrates GlotEval's applicability for multilingual and language-specific evaluations.
IndicVisionBench: Benchmarking Cultural and Multilingual Understanding in VLMs
Vision-language models (VLMs) have demonstrated impressive generalization across multimodal tasks, yet most evaluation benchmarks remain Western-centric, leaving open questions about their performance in culturally diverse and multilingual settings. To address this gap, we introduce IndicVisionBench, the first large-scale benchmark centered on the Indian subcontinent. Covering English and 10 Indian languages, our benchmark spans 3 multimodal tasks, including Optical Character Recognition (OCR), Multimodal Machine Translation (MMT), and Visual Question Answering (VQA), covering 6 kinds of question types. Our final benchmark consists of a total of ~5K images and 37K+ QA pairs across 13 culturally grounded topics. In addition, we release a paired parallel corpus of annotations across 10 Indic languages, creating a unique resource for analyzing cultural and linguistic biases in VLMs. We evaluate a broad spectrum of 8 models, from proprietary closed-source systems to open-weights medium and large-scale models. Our experiments reveal substantial performance gaps, underscoring the limitations of current VLMs in culturally diverse contexts. By centering cultural diversity and multilinguality, IndicVisionBench establishes a reproducible evaluation framework that paves the way for more inclusive multimodal research.
UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation
Recent progress in text-to-image (T2I) generation underscores the importance of reliable benchmarks in evaluating how accurately generated images reflect the semantics of their textual prompt. However, (1) existing benchmarks lack the diversity of prompt scenarios and multilingual support, both essential for real-world applicability; (2) they offer only coarse evaluations across primary dimensions, covering a narrow range of sub-dimensions, and fall short in fine-grained sub-dimension assessment. To address these limitations, we introduce UniGenBench++, a unified semantic assessment benchmark for T2I generation. Specifically, it comprises 600 prompts organized hierarchically to ensure both coverage and efficiency: (1) spans across diverse real-world scenarios, i.e., 5 main prompt themes and 20 subthemes; (2) comprehensively probes T2I models' semantic consistency over 10 primary and 27 sub evaluation criteria, with each prompt assessing multiple testpoints. To rigorously assess model robustness to variations in language and prompt length, we provide both English and Chinese versions of each prompt in short and long forms. Leveraging the general world knowledge and fine-grained image understanding capabilities of a closed-source Multi-modal Large Language Model (MLLM), i.e., Gemini-2.5-Pro, an effective pipeline is developed for reliable benchmark construction and streamlined model assessment. Moreover, to further facilitate community use, we train a robust evaluation model that enables offline assessment of T2I model outputs. Through comprehensive benchmarking of both open- and closed-sourced T2I models, we systematically reveal their strengths and weaknesses across various aspects.
MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale increase by approximately 0.12 to 0.36 points for the semantic similarity score in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
"Be My Cheese?": Cultural Nuance Benchmarking for Machine Translation in Multilingual LLMs
We present a large-scale human evaluation benchmark for assessing cultural localisation in machine translation produced by state-of-the-art multilingual large language models (LLMs). Existing MT benchmarks emphasise token-level and grammatical accuracy, but of ten overlook pragmatic and culturally grounded competencies required for real-world localisation. Building on a pilot study of 87 translations across 20 languages, we evaluate 7 multilingual LLMs across 15 target languages with 5 native-speaker raters per language. Raters scored both full-text translations and segment-level instances of culturally nuanced language (idioms, puns, holidays, and culturally embedded concepts) on an ordinal 0-3 quality scale; segment ratings additionally included an NA option for untranslated segments. Across full-text evaluations, mean overall quality is modest (1.68/3): GPT-5 (2.10/3), Claude Sonnet 3.7 (1.97/3), and Mistral Medium 3.1 (1.84/3) form the strongest tier with fewer catastrophic failures. Segment-level results show sharp category effects: holidays (2.20/3) and cultural concepts (2.19/3) translate substantially better than idioms (1.65/3) and puns (1.45/3), and idioms are most likely to be left untranslated. These findings demonstrate a persistent gap between grammatical adequacy and cultural resonance. To our knowledge, this is the first multilingual, human-annotated benchmark focused explicitly on cultural nuance in translation and localisation, highlighting the need for culturally informed training data, improved cross-lingual pragmatics, and evaluation paradigms that better reflect real-world communicative competence.
Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation
Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.
Is It Good Data for Multilingual Instruction Tuning or Just Bad Multilingual Evaluation for Large Language Models?
Large language models, particularly multilingual ones, are designed, claimed, and expected to cater to native speakers of varied languages. We hypothesise that the current practices of fine-tuning and evaluating these models may mismatch this intention owing to a heavy reliance on translation, which can introduce translation artefacts and defects. It remains unknown whether the nature of the instruction data has an impact on the model output; on the other hand, it remains questionable whether translated test sets can capture such nuances. Due to the often coupled practices of using translated data in both stages, such imperfections could have been overlooked. This work investigates these issues by using controlled native or translated data during instruction tuning and evaluation stages and observing model results. Experiments on eight base models and eight different benchmarks reveal that native or generation benchmarks display a notable difference between native and translated instruction data especially when model performance is high, whereas other types of test sets cannot. Finally, we demonstrate that regularization is beneficial to bridging this gap on structured but not generative tasks.
CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation
Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at https://github.com/WeixiangYAN/CodeScope.
XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation
Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite (MultiCheckList) and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models. The leaderboard and code for XTREME-R will be made available at https://sites.research.google/xtreme and https://github.com/google-research/xtreme respectively.
Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity
This paper presents the first Swedish evaluation benchmark for textual semantic similarity. The benchmark is compiled by simply running the English STS-B dataset through the Google machine translation API. This paper discusses potential problems with using such a simple approach to compile a Swedish evaluation benchmark, including translation errors, vocabulary variation, and productive compounding. Despite some obvious problems with the resulting dataset, we use the benchmark to compare the majority of the currently existing Swedish text representations, demonstrating that native models outperform multilingual ones, and that simple bag of words performs remarkably well.
The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
RabakBench: Scaling Human Annotations to Construct Localized Multilingual Safety Benchmarks for Low-Resource Languages
Large language models (LLMs) and their safety classifiers often perform poorly on low-resource languages due to limited training data and evaluation benchmarks. This paper introduces RabakBench, a new multilingual safety benchmark localized to Singapore's unique linguistic context, covering Singlish, Chinese, Malay, and Tamil. RabakBench is constructed through a scalable three-stage pipeline: (i) Generate - adversarial example generation by augmenting real Singlish web content with LLM-driven red teaming; (ii) Label - semi-automated multi-label safety annotation using majority-voted LLM labelers aligned with human judgments; and (iii) Translate - high-fidelity translation preserving linguistic nuance and toxicity across languages. The final dataset comprises over 5,000 safety-labeled examples across four languages and six fine-grained safety categories with severity levels. Evaluations of 11 popular open-source and closed-source guardrail classifiers reveal significant performance degradation. RabakBench not only enables robust safety evaluation in Southeast Asian multilingual settings but also offers a reproducible framework for building localized safety datasets in low-resource environments. The benchmark dataset, including the human-verified translations, and evaluation code are publicly available.
Kaleidoscope: In-language Exams for Massively Multilingual Vision Evaluation
The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
Revisiting non-English Text Simplification: A Unified Multilingual Benchmark
Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.
SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization Evaluation
Reliable automatic evaluation of summarization systems is challenging due to the multifaceted and subjective nature of the task. This is especially the case for languages other than English, where human evaluations are scarce. In this work, we introduce SEAHORSE, a dataset for multilingual, multifaceted summarization evaluation. SEAHORSE consists of 96K summaries with human ratings along 6 quality dimensions: comprehensibility, repetition, grammar, attribution, main ideas, and conciseness, covering 6 languages, 9 systems and 4 datasets. As a result of its size and scope, SEAHORSE can serve both as a benchmark to evaluate learnt metrics, as well as a large-scale resource for training such metrics. We show that metrics trained with SEAHORSE achieve strong performance on the out-of-domain meta-evaluation benchmarks TRUE (Honovich et al., 2022) and mFACE (Aharoni et al., 2022). We make SEAHORSE publicly available for future research on multilingual and multifaceted summarization evaluation.
Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation?
Large Language Models (LLMs) have demonstrated impressive performance on Natural Language Processing (NLP) tasks, such as Question Answering, Summarization, and Classification. The use of LLMs as evaluators, that can rank or score the output of other models (usually LLMs) has become increasingly popular, due to the limitations of current evaluation techniques including the lack of appropriate benchmarks, metrics, cost, and access to human annotators. While LLMs are capable of handling approximately 100 languages, the majority of languages beyond the top 20 lack systematic evaluation across various tasks, metrics, and benchmarks. This creates an urgent need to scale up multilingual evaluation to ensure a precise understanding of LLM performance across diverse languages. LLM-based evaluators seem like the perfect solution to this problem, as they do not require human annotators, human-created references, or benchmarks and can theoretically be used to evaluate any language covered by the LLM. In this paper, we investigate whether LLM-based evaluators can help scale up multilingual evaluation. Specifically, we calibrate LLM-based evaluation against 20k human judgments of five metrics across three text-generation tasks in eight languages. Our findings indicate that LLM-based evaluators may exhibit bias towards higher scores and should be used with caution and should always be calibrated with a dataset of native speaker judgments, particularly in low-resource and non-Latin script languages.
HEALTH-PARIKSHA: Assessing RAG Models for Health Chatbots in Real-World Multilingual Settings
Assessing the capabilities and limitations of large language models (LLMs) has garnered significant interest, yet the evaluation of multiple models in real-world scenarios remains rare. Multilingual evaluation often relies on translated benchmarks, which typically do not capture linguistic and cultural nuances present in the source language. This study provides an extensive assessment of 24 LLMs on real world data collected from Indian patients interacting with a medical chatbot in Indian English and 4 other Indic languages. We employ a uniform Retrieval Augmented Generation framework to generate responses, which are evaluated using both automated techniques and human evaluators on four specific metrics relevant to our application. We find that models vary significantly in their performance and that instruction tuned Indic models do not always perform well on Indic language queries. Further, we empirically show that factual correctness is generally lower for responses to Indic queries compared to English queries. Finally, our qualitative work shows that code-mixed and culturally relevant queries in our dataset pose challenges to evaluated models.
AfriMTEB and AfriE5: Benchmarking and Adapting Text Embedding Models for African Languages
Text embeddings are an essential building component of several NLP tasks such as retrieval-augmented generation which is crucial for preventing hallucinations in LLMs. Despite the recent release of massively multilingual MTEB (MMTEB), African languages remain underrepresented, with existing tasks often repurposed from translation benchmarks such as FLORES clustering or SIB-200. In this paper, we introduce AfriMTEB -- a regional expansion of MMTEB covering 59 languages, 14 tasks, and 38 datasets, including six newly added datasets. Unlike many MMTEB datasets that include fewer than five languages, the new additions span 14 to 56 African languages and introduce entirely new tasks, such as hate speech detection, intent detection, and emotion classification, which were not previously covered. Complementing this, we present AfriE5, an adaptation of the instruction-tuned mE5 model to African languages through cross-lingual contrastive distillation. Our evaluation shows that AfriE5 achieves state-of-the-art performance, outperforming strong baselines such as Gemini-Embeddings and mE5.
IndicRAGSuite: Large-Scale Datasets and a Benchmark for Indian Language RAG Systems
Retrieval-Augmented Generation (RAG) systems enable language models to access relevant information and generate accurate, well-grounded, and contextually informed responses. However, for Indian languages, the development of high-quality RAG systems is hindered by the lack of two critical resources: (1) evaluation benchmarks for retrieval and generation tasks, and (2) large-scale training datasets for multilingual retrieval. Most existing benchmarks and datasets are centered around English or high-resource languages, making it difficult to extend RAG capabilities to the diverse linguistic landscape of India. To address the lack of evaluation benchmarks, we create IndicMSMarco, a multilingual benchmark for evaluating retrieval quality and response generation in 13 Indian languages, created via manual translation of 1000 diverse queries from MS MARCO-dev set. To address the need for training data, we build a large-scale dataset of (question, answer, relevant passage) tuples derived from the Wikipedias of 19 Indian languages using state-of-the-art LLMs. Additionally, we include translated versions of the original MS MARCO dataset to further enrich the training data and ensure alignment with real-world information-seeking tasks. Resources are available here: https://huggingface.co/datasets/ai4bharat/Indic-Rag-Suite
Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
GreekMMLU: A Native-Sourced Multitask Benchmark for Evaluating Language Models in Greek
Large Language Models (LLMs) are commonly trained on multilingual corpora that include Greek, yet reliable evaluation benchmarks for Greek-particularly those based on authentic, native-sourced content-remain limited. Existing datasets are often machine-translated from English, failing to capture Greek linguistic and cultural characteristics. We introduce GreekMMLU, a native-sourced benchmark for massive multitask language understanding in Greek, comprising 21,805 multiple-choice questions across 45 subject areas, organized under a newly defined subject taxonomy and annotated with educational difficulty levels spanning primary to professional examinations. All questions are sourced or authored in Greek from academic, professional, and governmental exams. We publicly release 16,857 samples and reserve 4,948 samples for a private leaderboard to enable robust and contamination-resistant evaluation. Evaluations of over 80 open- and closed-source LLMs reveal substantial performance gaps between frontier and open-weight models, as well as between Greek-adapted models and general multilingual ones. Finally, we provide a systematic analysis of factors influencing performance-including model scale, adaptation, and prompting-and derive insights for improving LLM capabilities in Greek.
Towards Cross-Lingual LLM Evaluation for European Languages
The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apur\'imac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.
M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. Numerous effective IFT datasets have been proposed in the recent past, but most focus on high resource languages such as English. In this work, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual, to better align LLMs on a diverse set of languages and tasks. M2Lingual contains a total of 182K IFT pairs that are built upon diverse seeds, covering 70 languages, 17 NLP tasks and general instruction-response pairs. LLMs finetuned with M2Lingual substantially outperform the majority of existing multilingual IFT datasets. Importantly, LLMs trained with M2Lingual consistently achieve competitive results across a wide variety of evaluation benchmarks compared to existing multilingual IFT datasets. Specifically, LLMs finetuned with M2Lingual achieve strong performance on our translated multilingual, multi-turn evaluation benchmark as well as a wide variety of multilingual tasks. Thus we contribute, and the 2 step Evol taxonomy used for its creation. M2Lingual repository - https://huggingface.co/datasets/ServiceNow-AI/M2Lingual
Towards Inducing Document-Level Abilities in Standard Multilingual Neural Machine Translation Models
Neural Machine Translation (NMT) models have traditionally used Sinusoidal Positional Embeddings (PEs), which often struggle to capture long-range dependencies and are less efficient for handling extended context or document-level translation tasks. This work addresses the challenge of transitioning pre-trained NMT models from absolute sinusoidal PEs to relative PEs, such as Rotary Positional Embeddings (ROPE) and Attention with Linear Biases (ALIBI), without compromising performance. We demonstrate that parameter-efficient fine-tuning, using only a small amount of high-quality data, can successfully facilitate this transition. Experimental results indicate that switching from sinusoidal to relative PEs results in competitive translation quality on sentence-level evaluation benchmarks. Additionally, models trained with ROPE consistently outperform those using ALIBI and Sinusoidal PEs on document-level benchmarks across both string-based metrics and qualitative evaluations. Moreover, we find that a small amount of long-context data in a few languages is sufficient for cross-lingual length generalization, thereby inducing long-context capabilities.
Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People
Despite the vast repository of global medical knowledge predominantly being in English, local languages are crucial for delivering tailored healthcare services, particularly in areas with limited medical resources. To extend the reach of medical AI advancements to a broader population, we aim to develop medical LLMs across the six most widely spoken languages, encompassing a global population of 6.1 billion. This effort culminates in the creation of the ApolloCorpora multilingual medical dataset and the XMedBench benchmark. In the multilingual medical benchmark, the released Apollo models, at various relatively-small sizes (i.e., 0.5B, 1.8B, 2B, 6B, and 7B), achieve the best performance among models of equivalent size. Especially, Apollo-7B is the state-of-the-art multilingual medical LLMs up to 70B. Additionally, these lite models could be used to improve the multi-lingual medical capabilities of larger models without fine-tuning in a proxy-tuning fashion. We will open-source training corpora, code, model weights and evaluation benchmark.
Why We Build Local Large Language Models: An Observational Analysis from 35 Japanese and Multilingual LLMs
Why do we build local large language models (LLMs)? What should a local LLM learn from the target language? Which abilities can be transferred from other languages? Do language-specific scaling laws exist? To explore these research questions, we evaluated 35 Japanese, English, and multilingual LLMs on 19 evaluation benchmarks for Japanese and English, taking Japanese as a local language. Adopting an observational approach, we analyzed correlations of benchmark scores, and conducted principal component analysis (PCA) on the scores to derive ability factors of local LLMs. We found that training on English text can improve the scores of academic subjects in Japanese (JMMLU). In addition, it is unnecessary to specifically train on Japanese text to enhance abilities for solving Japanese code generation, arithmetic reasoning, commonsense, and reading comprehension tasks. In contrast, training on Japanese text could improve question-answering tasks about Japanese knowledge and English-Japanese translation, which indicates that abilities for solving these two tasks can be regarded as Japanese abilities for LLMs. Furthermore, we confirmed that the Japanese abilities scale with the computational budget for Japanese text.
TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish
Multiple choice question answering tasks evaluate the reasoning, comprehension, and mathematical abilities of Large Language Models (LLMs). While existing benchmarks employ automatic translation for multilingual evaluation, this approach is error-prone and potentially introduces culturally biased questions, especially in social sciences. We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU, to evaluate LLMs' understanding of the Turkish language. TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula. These questions are written by curriculum experts, suitable for the high-school curricula in Turkey, covering subjects ranging from natural sciences and math questions to more culturally representative topics such as Turkish Literature and the history of the Turkish Republic. We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models. We provide an extensive evaluation, including zero-shot and few-shot evaluation of LLMs, chain-of-thought reasoning, and question difficulty analysis along with model performance. We provide an in-depth analysis of the Turkish capabilities and limitations of current LLMs to provide insights for future LLMs for the Turkish language. We publicly release our code for the dataset and evaluation: https://github.com/ArdaYueksel/TurkishMMLU.
Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training
Recently published work on rephrasing natural text data for pre-training LLMs has shown promising results when combining the original dataset with the synthetically rephrased data. We build upon previous work by replicating existing results on C4 and extending them with our optimized rephrasing pipeline to the English, German, Italian, and Spanish Oscar subsets of CulturaX. Our pipeline leads to increased performance on standard evaluation benchmarks in both the mono- and multilingual setup. In addition, we provide a detailed study of our pipeline, investigating the choice of the base dataset and LLM for the rephrasing, as well as the relationship between the model size and the performance after pre-training. By exploring data with different perceived quality levels, we show that gains decrease with higher quality. Furthermore, we find the difference in performance between model families to be bigger than between different model sizes. This highlights the necessity for detailed tests before choosing an LLM to rephrase large amounts of data. Moreover, we investigate the effect of pre-training with synthetic data on supervised fine-tuning. Here, we find increasing but inconclusive results that highly depend on the used benchmark. These results (again) highlight the need for better benchmarking setups. In summary, we show that rephrasing multilingual and low-quality data is a very promising direction to extend LLM pre-training data.
Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic
Aligned language models face a significant limitation as their fine-tuning often results in compromised safety. To tackle this, we propose a simple method RESTA that performs LLM safety realignment. RESTA stands for REstoring Safety through Task Arithmetic. At its core, it involves a simple arithmetic addition of a safety vector to the weights of the compromised model. We demonstrate the effectiveness of RESTA in both parameter-efficient and full fine-tuning, covering a wide range of downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math. We also showcase the generalizability of RESTA on three existing safety evaluation benchmarks and a multilingual benchmark dataset proposed as a part of this work, consisting of 550 harmful questions covering 11 categories, each with 5 sub-categories of harm. Overall, RESTA decreases the harmfulness of the compromised model from 18.6% to 5.1% and from 9.2% to 1.5% in parameter-efficient and full fine-tuning, respectively, while maintaining most of the model's performance on the task. We release the source codes at: https://github.com/declare-lab/resta.
LLMs for Extremely Low-Resource Finno-Ugric Languages
The advancement of large language models (LLMs) has predominantly focused on high-resource languages, leaving low-resource languages, such as those in the Finno-Ugric family, significantly underrepresented. This paper addresses this gap by focusing on V\~oro, Livonian, and Komi. We cover almost the entire cycle of LLM creation, from data collection to instruction tuning and evaluation. Our contributions include developing multilingual base and instruction-tuned models; creating evaluation benchmarks, including the smugri-MT-bench multi-turn conversational benchmark; and conducting human evaluation. We intend for this work to promote linguistic diversity, ensuring that lesser-resourced languages can benefit from advancements in NLP.
Understanding and Mitigating Language Confusion in LLMs
We investigate a surprising limitation of LLMs: their inability to consistently generate text in a user's desired language. We create the Language Confusion Benchmark (LCB) to evaluate such failures, covering 15 typologically diverse languages with existing and newly-created English and multilingual prompts. We evaluate a range of LLMs on monolingual and cross-lingual generation reflecting practical use cases, finding that Llama Instruct and Mistral models exhibit high degrees of language confusion and even the strongest models fail to consistently respond in the correct language. We observe that base and English-centric instruct models are more prone to language confusion, which is aggravated by complex prompts and high sampling temperatures. We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning. We release our language confusion benchmark, which serves as a first layer of efficient, scalable multilingual evaluation at https://github.com/for-ai/language-confusion.
Nile-Chat: Egyptian Language Models for Arabic and Latin Scripts
We introduce Nile-Chat-4B, 3x4B-A6B, and 12B, a collection of LLMs for Egyptian dialect, uniquely designed to understand and generate texts written in both Arabic and Latin scripts. Specifically, with Nile-Chat-3x4B-A6B, we introduce a novel language adaptation approach by leveraging the Branch-Train-MiX strategy to merge script-specialized experts, into a single MoE model. Our Nile-Chat models significantly outperform leading multilingual and Arabic LLMs, such as LLaMa, Jais, and ALLaM, on our newly introduced Egyptian evaluation benchmarks, which span both understanding and generative tasks. Notably, our 12B model yields a 14.4% performance gain over Qwen2.5-14B-Instruct on Latin-script benchmarks. All our resources are publicly available. We believe this work presents a comprehensive methodology for adapting LLMs to dual-script languages, addressing an often overlooked aspect in modern LLM development.
Revisiting Low Resource Status of Indian Languages in Machine Translation
Indian language machine translation performance is hampered due to the lack of large scale multi-lingual sentence aligned corpora and robust benchmarks. Through this paper, we provide and analyse an automated framework to obtain such a corpus for Indian language neural machine translation (NMT) systems. Our pipeline consists of a baseline NMT system, a retrieval module, and an alignment module that is used to work with publicly available websites such as press releases by the government. The main contribution towards this effort is to obtain an incremental method that uses the above pipeline to iteratively improve the size of the corpus as well as improve each of the components of our system. Through our work, we also evaluate the design choices such as the choice of pivoting language and the effect of iterative incremental increase in corpus size. Our work in addition to providing an automated framework also results in generating a relatively larger corpus as compared to existing corpora that are available for Indian languages. This corpus helps us obtain substantially improved results on the publicly available WAT evaluation benchmark and other standard evaluation benchmarks.
Summarizing Speech: A Comprehensive Survey
Speech summarization has become an essential tool for efficiently managing and accessing the growing volume of spoken and audiovisual content. However, despite its increasing importance, speech summarization remains loosely defined. The field intersects with several research areas, including speech recognition, text summarization, and specific applications like meeting summarization. This survey not only examines existing datasets and evaluation protocols, which are crucial for assessing the quality of summarization approaches, but also synthesizes recent developments in the field, highlighting the shift from traditional systems to advanced models like fine-tuned cascaded architectures and end-to-end solutions. In doing so, we surface the ongoing challenges, such as the need for realistic evaluation benchmarks, multilingual datasets, and long-context handling.
IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages
As large language models (LLMs) see increasing adoption across the globe, it is imperative for LLMs to be representative of the linguistic diversity of the world. India is a linguistically diverse country of 1.4 Billion people. To facilitate research on multilingual LLM evaluation, we release IndicGenBench - the largest benchmark for evaluating LLMs on user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families. IndicGenBench is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering. IndicGenBench extends existing benchmarks to many Indic languages through human curation providing multi-way parallel evaluation data for many under-represented Indic languages for the first time. We evaluate a wide range of proprietary and open-source LLMs including GPT-3.5, GPT-4, PaLM-2, mT5, Gemma, BLOOM and LLaMA on IndicGenBench in a variety of settings. The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English showing that further research is needed for the development of more inclusive multilingual language models. IndicGenBench is released at www.github.com/google-research-datasets/indic-gen-bench
Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset
Research in massively multilingual image captioning has been severely hampered by a lack of high-quality evaluation datasets. In this paper we present the Crossmodal-3600 dataset (XM3600 in short), a geographically diverse set of 3600 images annotated with human-generated reference captions in 36 languages. The images were selected from across the world, covering regions where the 36 languages are spoken, and annotated with captions that achieve consistency in terms of style across all languages, while avoiding annotation artifacts due to direct translation. We apply this benchmark to model selection for massively multilingual image captioning models, and show superior correlation results with human evaluations when using XM3600 as golden references for automatic metrics.
XLQA: A Benchmark for Locale-Aware Multilingual Open-Domain Question Answering
Large Language Models (LLMs) have shown significant progress in Open-domain question answering (ODQA), yet most evaluations focus on English and assume locale-invariant answers across languages. This assumption neglects the cultural and regional variations that affect question understanding and answer, leading to biased evaluation in multilingual benchmarks. To address these limitations, we introduce XLQA, a novel benchmark explicitly designed for locale-sensitive multilingual ODQA. XLQA contains 3,000 English seed questions expanded to eight languages, with careful filtering for semantic consistency and human-verified annotations distinguishing locale-invariant and locale-sensitive cases. Our evaluation of five state-of-the-art multilingual LLMs reveals notable failures on locale-sensitive questions, exposing gaps between English and other languages due to a lack of locale-grounding knowledge. We provide a systematic framework and scalable methodology for assessing multilingual QA under diverse cultural contexts, offering a critical resource to advance the real-world applicability of multilingual ODQA systems. Our findings suggest that disparities in training data distribution contribute to differences in both linguistic competence and locale-awareness across models.
Ticket-Bench: A Kickoff for Multilingual and Regionalized Agent Evaluation
Large language models (LLMs) are increasingly deployed as task-oriented agents, where success depends on their ability to generate accurate function calls under realistic, multilingual conditions. However, existing agent evaluations largely overlook cultural and linguistic diversity, often relying on monolingual or naively translated benchmarks. We introduce Ticket-Bench, a benchmark for multilingual agent evaluation in task-oriented scenarios. Ticket-Bench simulates the domain of soccer ticket purchases across six major languages: Portuguese, English, Spanish, German, Italian, and French. Using localized teams, cities, and user profiles to provide a higher level of realism. We evaluate a wide range of commercial and open-source LLMs, measuring function-calling accuracy and consistency across languages. Results show that reasoning-oriented models (e.g., GPT-5, Qwen3-235B) dominate performance but still exhibit notable cross-lingual disparities. These findings underscore the need for culturally aware, multilingual benchmarks to guide the development of robust LLM agents.
XCOMPS: A Multilingual Benchmark of Conceptual Minimal Pairs
We introduce XCOMPS in this work, a multilingual conceptual minimal pair dataset covering 17 languages. Using this dataset, we evaluate LLMs' multilingual conceptual understanding through metalinguistic prompting, direct probability measurement, and neurolinguistic probing. By comparing base, instruction-tuned, and knowledge-distilled models, we find that: 1) LLMs exhibit weaker conceptual understanding for low-resource languages, and accuracy varies across languages despite being tested on the same concept sets. 2) LLMs excel at distinguishing concept-property pairs that are visibly different but exhibit a marked performance drop when negative pairs share subtle semantic similarities. 3) Instruction tuning improves performance in concept understanding but does not enhance internal competence; knowledge distillation can enhance internal competence in conceptual understanding for low-resource languages with limited gains in explicit task performance. 4) More morphologically complex languages yield lower concept understanding scores and require deeper layers for conceptual reasoning.
POLYCHARTQA: Benchmarking Large Vision-Language Models with Multilingual Chart Question Answering
Charts are a universally adopted medium for interpreting and communicating data. However, existing chart understanding benchmarks are predominantly English-centric, limiting their accessibility and applicability to global audiences. In this paper, we present PolyChartQA, the first large-scale multilingual chart question answering benchmark covering 22,606 charts and 26,151 question-answering pairs across 10 diverse languages. PolyChartQA is built using a decoupled pipeline that separates chart data from rendering code, allowing multilingual charts to be flexibly generated by simply translating the data and reusing the code. We leverage state-of-the-art LLM-based translation and enforce rigorous quality control in the pipeline to ensure the linguistic and semantic consistency of the generated multilingual charts. PolyChartQA facilitates systematic evaluation of multilingual chart understanding. Experiments on both open- and closed-source large vision-language models reveal a significant performance gap between English and other languages, especially low-resource ones with non-Latin scripts. This benchmark lays a foundation for advancing globally inclusive vision-language models.
Fleurs-SLU: A Massively Multilingual Benchmark for Spoken Language Understanding
While recent multilingual automatic speech recognition models claim to support thousands of languages, ASR for low-resource languages remains highly unreliable due to limited bimodal speech and text training data. Better multilingual spoken language understanding (SLU) can strengthen massively the robustness of multilingual ASR by levering language semantics to compensate for scarce training data, such as disambiguating utterances via context or exploiting semantic similarities across languages. Even more so, SLU is indispensable for inclusive speech technology in roughly half of all living languages that lack a formal writing system. However, the evaluation of multilingual SLU remains limited to shallower tasks such as intent classification or language identification. To address this, we present Fleurs-SLU, a multilingual SLU benchmark that encompasses topical speech classification in 102 languages and multiple-choice question answering through listening comprehension in 92 languages. We extensively evaluate both end-to-end speech classification models and cascaded systems that combine speech-to-text transcription with subsequent classification by large language models on Fleurs-SLU. Our results show that cascaded systems exhibit greater robustness in multilingual SLU tasks, though speech encoders can achieve competitive performance in topical speech classification when appropriately pre-trained. We further find a strong correlation between robust multilingual ASR, effective speech-to-text translation, and strong multilingual SLU, highlighting the mutual benefits between acoustic and semantic speech representations.
HumanEval-XL: A Multilingual Code Generation Benchmark for Cross-lingual Natural Language Generalization
Large language models (LLMs) have made significant progress in generating codes from textual prompts. However, existing benchmarks have mainly concentrated on translating English prompts to multilingual codes or have been constrained to very limited natural languages (NLs). These benchmarks have overlooked the vast landscape of massively multilingual NL to multilingual code, leaving a critical gap in the evaluation of multilingual LLMs. In response, we introduce HumanEval-XL, a massively multilingual code generation benchmark specifically crafted to address this deficiency. HumanEval-XL establishes connections between 23 NLs and 12 programming languages (PLs), and comprises of a collection of 22,080 prompts with an average of 8.33 test cases. By ensuring parallel data across multiple NLs and PLs, HumanEval-XL offers a comprehensive evaluation platform for multilingual LLMs, allowing the assessment of the understanding of different NLs. Our work serves as a pioneering step towards filling the void in evaluating NL generalization in the area of multilingual code generation. We make our evaluation code and data publicly available at https://github.com/FloatAI/HumanEval-XL.
XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders XTREME benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
MMTEB: Massive Multilingual Text Embedding Benchmark
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
PARIKSHA : A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
Despite advances in multilingual automatic speech recognition (ASR), code-switching (CS), the mixing of languages within an utterance common in daily speech, remains a severely underexplored challenge. In this paper, we introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the first globally accessible evaluation framework for Korean-English CS, aiming to provide a means for the precise evaluation of multilingual ASR models and to foster research in the field. The proposed framework not only consists of high-quality, natural CS data across various topics, but also provides meticulous loanword labels and a hierarchical CS-level labeling scheme (word, phrase, and sentence) that together enable a systematic evaluation of a model's ability to handle each distinct level of code-switching. Through evaluations of diverse multilingual ASR models and fine-tuning experiments, this paper demonstrates that while most multilingual ASR models initially struggle with CS-ASR, this capability can be enabled through fine-tuning with CS data. HiKE will be available at https://github.com/ThetaOne-AI/HiKE.
SwissGov-RSD: A Human-annotated, Cross-lingual Benchmark for Token-level Recognition of Semantic Differences Between Related Documents
Recognizing semantic differences across documents, especially in different languages, is crucial for text generation evaluation and multilingual content alignment. However, as a standalone task it has received little attention. We address this by introducing SwissGov-RSD, the first naturalistic, document-level, cross-lingual dataset for semantic difference recognition. It encompasses a total of 224 multi-parallel documents in English-German, English-French, and English-Italian with token-level difference annotations by human annotators. We evaluate a variety of open-source and closed source large language models as well as encoder models across different fine-tuning settings on this new benchmark. Our results show that current automatic approaches perform poorly compared to their performance on monolingual, sentence-level, and synthetic benchmarks, revealing a considerable gap for both LLMs and encoder models. We make our code and datasets publicly available.
Language Models' Factuality Depends on the Language of Inquiry
Multilingual language models (LMs) are expected to recall factual knowledge consistently across languages, yet they often fail to transfer knowledge between languages even when they possess the correct information in one of the languages. For example, we find that an LM may correctly identify Rashed Al Shashai as being from Saudi Arabia when asked in Arabic, but consistently fails to do so when asked in English or Swahili. To systematically investigate this limitation, we introduce a benchmark of 10,000 country-related facts across 13 languages and propose three novel metrics: Factual Recall Score, Knowledge Transferability Score, and Cross-Lingual Factual Knowledge Transferability Score-to quantify factual recall and knowledge transferability in LMs across different languages. Our results reveal fundamental weaknesses in today's state-of-the-art LMs, particularly in cross-lingual generalization where models fail to transfer knowledge effectively across different languages, leading to inconsistent performance sensitive to the language used. Our findings emphasize the need for LMs to recognize language-specific factual reliability and leverage the most trustworthy information across languages. We release our benchmark and evaluation framework to drive future research in multilingual knowledge transfer.
Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding
Real-world clinical decision-making grapples with integrating information from diverse data modalities, including medical text, 2D/3D images, and video, leading to inefficiencies and potential diagnostic oversights. While generalist vision-language models (VLMs) offer promise, their medical development faces challenges of opaque pipelines, data scarcity, and architectural inflexibility. Here we present Hulu-Med, a transparent medical VLM that unifies understanding across all these modalities. Built upon a unified patch-based vision encoder and an LLM decoder, Hulu-Med was progressively trained on 16.7 million (M) samples to scale from 2D to 3D and video comprehension. The medical-aware token reduction enables efficient training, requiring only 4,000 to 40,000 GPU hours for 7B to 32B parameter variants. Extensive evaluation across 30 benchmarks exhibits state-of-the-art performance, surpassing leading open-source models and competing with proprietary systems in tasks spanning visual question-answering, medical report generation, and complex reasoning in multilingual and rare disease scenarios. By open-sourcing our complete pipeline, we establish that high-performance medical VLM can be achieved transparently, providing a foundational tool for accessible and impactful clinical AI. Code is released on https://github.com/ZJUI-AI4H/Hulu-Med{https://github.com/ZJUI-AI4H/Hulu-Med}.
LinguaLIFT: An Effective Two-stage Instruction Tuning Framework for Low-Resource Language Tasks
Large language models (LLMs) have demonstrated impressive multilingual understanding and reasoning capabilities, driven by extensive pre-training multilingual corpora and fine-tuning instruction data. However, a performance gap persists between high-resource and low-resource language tasks due to language imbalance in the pre-training corpus, even using more low-resource data during fine-tuning. To alleviate this issue, we propose LinguaLIFT, a two-stage instruction tuning framework for advancing low-resource language tasks. An additional language alignment layer is first integrated into the LLM to adapt a pre-trained multilingual encoder, thereby enhancing multilingual alignment through code-switched fine-tuning. The second stage fine-tunes LLM with English-only instruction data while freezing the language alignment layer, allowing LLM to transfer task-specific capabilities from English to low-resource language tasks. Additionally, we introduce the Multilingual Math World Problem (MMWP) benchmark, which spans 21 low-resource, 17 medium-resource, and 10 high-resource languages, enabling comprehensive evaluation of multilingual reasoning. Experimental results show that LinguaLIFT outperforms several competitive baselines across MMWP and other widely used benchmarks.
MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation
Traditional benchmarks struggle to evaluate increasingly sophisticated language models in multilingual and culturally diverse contexts. To address this gap, we introduce MMLU-ProX, a comprehensive multilingual benchmark covering 13 typologically diverse languages with approximately 11,829 questions per language. Building on the challenging reasoning-focused design of MMLU-Pro, our framework employs a semi-automatic translation process: translations generated by state-of-the-art large language models (LLMs) are rigorously evaluated by expert annotators to ensure conceptual accuracy, terminological consistency, and cultural relevance. We comprehensively evaluate 25 state-of-the-art LLMs using 5-shot chain-of-thought (CoT) and zero-shot prompting strategies, analyzing their performance across linguistic and cultural boundaries. Our experiments reveal consistent performance degradation from high-resource languages to lower-resource ones, with the best models achieving over 70% accuracy on English but dropping to around 40% for languages like Swahili, highlighting persistent gaps in multilingual capabilities despite recent advances. MMLU-ProX is an ongoing project; we are expanding our benchmark by incorporating additional languages and evaluating more language models to provide a more comprehensive assessment of multilingual capabilities.
MultiFinBen: A Multilingual, Multimodal, and Difficulty-Aware Benchmark for Financial LLM Evaluation
Recent advances in large language models (LLMs) have accelerated progress in financial NLP and applications, yet existing benchmarks remain limited to monolingual and unimodal settings, often over-relying on simple tasks and failing to reflect the complexity of real-world financial communication. We introduce MultiFinBen, the first multilingual and multimodal benchmark tailored to the global financial domain, evaluating LLMs across modalities (text, vision, audio) and linguistic settings (monolingual, bilingual, multilingual) on domain-specific tasks. We introduce two novel tasks, including PolyFiQA-Easy and PolyFiQA-Expert, the first multilingual financial benchmarks requiring models to perform complex reasoning over mixed-language inputs; and EnglishOCR and SpanishOCR, the first OCR-embedded financial QA tasks challenging models to extract and reason over information from visual-text financial documents. Moreover, we propose a dynamic, difficulty-aware selection mechanism and curate a compact, balanced benchmark rather than simple aggregation existing datasets. Extensive evaluation of 22 state-of-the-art models reveals that even the strongest models, despite their general multimodal and multilingual capabilities, struggle dramatically when faced with complex cross-lingual and multimodal tasks in financial domain. MultiFinBen is publicly released to foster transparent, reproducible, and inclusive progress in financial studies and applications.
Tiny QA Benchmark++: Ultra-Lightweight, Synthetic Multilingual Dataset Generation & Smoke-Tests for Continuous LLM Evaluation
Tiny QA Benchmark++ (TQB++) presents an ultra-lightweight, multilingual smoke-test suite designed to give large-language-model (LLM) pipelines a unit-test style safety net dataset that runs in seconds with minimal cost. Born out of the tight feedback-loop demands building the Comet Opik prompt-optimization SDK, where waiting on heavyweight benchmarks breaks developer flow. TQB++ couples a 52-item English gold set (less than 20 kB) with a tiny synthetic-data generator pypi package built on provider-agnostic LiteLLM. The generator lets practitioners mint their own tiny packs in any language, domain, or difficulty, while ten ready-made packs already cover Arabic, Chinese, French, German, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. Every dataset ships with Croissant metadata and plug-and-play files for OpenAI-Evals, LangChain, and standard CI tools, so teams can drop deterministic micro-benchmarks directly into pull-request gates, prompt-engineering loops, and production dashboards without touching GPU budgets. A complete TQB++ run adds only a few seconds to pipeline latency yet reliably flags prompt-template errors, tokenizer drift, and fine-tuning side-effects long before full-scale suites like MMLU or BIG-Bench would finish configuring. The entire framework is released to accelerate continuous, resource-efficient quality assurance across the generative-AI ecosystem.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks, i.e., their ability to differentiate between models being evaluated. Leveraging this pipeline, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models, analyze dataset effectiveness, examine prompt impacts on model performances, and explore the relationship between multilingual performances and factors such as tasks, model sizes, and languages. These insights offer valuable guidance for future research. The dataset is available at https://huggingface.co/datasets/Qwen/P-MMEval.
MiLiC-Eval: Benchmarking Multilingual LLMs for China's Minority Languages
Large language models (LLMs) excel in high-resource languages but struggle with low-resource languages (LRLs), particularly those spoken by minority communities in China, such as Tibetan, Uyghur, Kazakh, and Mongolian. To systematically track the progress in these languages, we introduce MiLiC-Eval, a benchmark designed for minority languages in China, featuring 24K instances across 9 tasks. MiLiC-Eval focuses on underrepresented writing systems and provides a fine-grained assessment of linguistic and problem-solving skills. Our evaluation reveals that LLMs perform poorly on syntax-intensive tasks and multi-script languages. We further demonstrate how MiLiC-Eval can help advance LRL research in handling diverse writing systems and understanding the process of language adaptation.
WebMMU: A Benchmark for Multimodal Multilingual Website Understanding and Code Generation
We present WebMMU, a multilingual benchmark that evaluates three core web tasks: (1) website visual question answering, (2) code editing involving HTML/CSS/JavaScript, and (3) mockup-to-code generation. Unlike prior benchmarks that treat these tasks separately, WebMMU unifies them using expert-annotated, real-world web data to assess models' abilities in complex multi-step reasoning, precise element grounding, and functional UI comprehension and coding. Our evaluation shows that while multimodal large language models (MLLMs) perform well on basic information extraction, they struggle with reasoning and grounding, editing code to preserve functionality, and generating design-to-code that maintains hierarchy and supports multilingual content. These findings reveal key limitations in current MLLMs and underscore the need for improved multimodal and cross-lingual reasoning to build future web agents capable of automating diverse web development tasks.
ReadMe++: Benchmarking Multilingual Language Models for Multi-Domain Readability Assessment
We present a comprehensive evaluation of large language models for multilingual readability assessment. Existing evaluation resources lack domain and language diversity, limiting the ability for cross-domain and cross-lingual analyses. This paper introduces ReadMe++, a multilingual multi-domain dataset with human annotations of 9757 sentences in Arabic, English, French, Hindi, and Russian, collected from 112 different data sources. This benchmark will encourage research on developing robust multilingual readability assessment methods. Using ReadMe++, we benchmark multilingual and monolingual language models in the supervised, unsupervised, and few-shot prompting settings. The domain and language diversity in ReadMe++ enable us to test more effective few-shot prompting, and identify shortcomings in state-of-the-art unsupervised methods. Our experiments also reveal exciting results of superior domain generalization and enhanced cross-lingual transfer capabilities by models trained on ReadMe++. We will make our data publicly available and release a python package tool for multilingual sentence readability prediction using our trained models at: https://github.com/tareknaous/readme
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
OmniGIRL: A Multilingual and Multimodal Benchmark for GitHub Issue Resolution
The GitHub issue resolution task aims to resolve issues reported in repositories automatically. With advances in large language models (LLMs), this task has gained increasing attention, and several benchmarks are proposed to evaluate the issue resolution ability of LLMs. However, existing benchmarks have three main limitations. First, current benchmarks focus on a single programming language, limiting the evaluation of issues from repositories across different languages. Second, they usually cover a narrow range of domains, which may fail to represent the diversity of real-world issues. Third, existing benchmarks rely solely on textual information in issue descriptions, overlooking multimodal information such as images in issues. In this paper, we propose OmniGIRL, a GitHub Issue ResoLution benchmark that is multilingual, multimodal, and multi-domain. OmniGIRL includes 959 task instances, which are collected from repositories across four programming languages (i.e., Python, JavaScript, TypeScript, and Java) and eight different domains. Our evaluation shows that current LLMs show limited performances on OmniGIRL. Notably, the best-performing model, GPT-4o, resolves only 8.6% of the issues. Besides, we find that current LLMs struggle to resolve issues requiring understanding images. The best performance is achieved by Claude-3.5-Sonnet, which resolves only 10.5% of the issues with image information. Finally, we analyze the reasons behind current LLMs' failure on OmniGIRL, providing insights for future improvements.
VLR-Bench: Multilingual Benchmark Dataset for Vision-Language Retrieval Augmented Generation
We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.
BabyBabelLM: A Multilingual Benchmark of Developmentally Plausible Training Data
We present BabyBabelLM, a multilingual collection of datasets modeling the language a person observes from birth until they acquire a native language. We curate developmentally plausible pretraining data aiming to cover the equivalent of 100M English words of content in each of 45 languages. We compile evaluation suites and train baseline models in each language. BabyBabelLM aims to facilitate multilingual pretraining and cognitive modeling.
macOSWorld: A Multilingual Interactive Benchmark for GUI Agents
Graphical User Interface (GUI) agents show promising capabilities for automating computer-use tasks and facilitating accessibility, but existing interactive benchmarks are mostly English-only, covering web-use or Windows, Linux, and Android environments, but not macOS. macOS is a major OS with distinctive GUI patterns and exclusive applications. To bridge the gaps, we present macOSWorld, the first comprehensive benchmark for evaluating GUI agents on macOS. macOSWorld features 202 multilingual interactive tasks across 30 applications (28 macOS-exclusive), with task instructions and OS interfaces offered in 5 languages (English, Chinese, Arabic, Japanese, and Russian). As GUI agents are shown to be vulnerable to deception attacks, macOSWorld also includes a dedicated safety benchmarking subset. Our evaluation on six GUI agents reveals a dramatic gap: proprietary computer-use agents lead at above 30% success rate, while open-source lightweight research models lag at below 2%, highlighting the need for macOS domain adaptation. Multilingual benchmarks also expose common weaknesses, especially in Arabic, with a 27.5% average degradation compared to English. Results from safety benchmarking also highlight that deception attacks are more general and demand immediate attention. macOSWorld is available at https://github.com/showlab/macosworld.
Multi-OphthaLingua: A Multilingual Benchmark for Assessing and Debiasing LLM Ophthalmological QA in LMICs
Current ophthalmology clinical workflows are plagued by over-referrals, long waits, and complex and heterogeneous medical records. Large language models (LLMs) present a promising solution to automate various procedures such as triaging, preliminary tests like visual acuity assessment, and report summaries. However, LLMs have demonstrated significantly varied performance across different languages in natural language question-answering tasks, potentially exacerbating healthcare disparities in Low and Middle-Income Countries (LMICs). This study introduces the first multilingual ophthalmological question-answering benchmark with manually curated questions parallel across languages, allowing for direct cross-lingual comparisons. Our evaluation of 6 popular LLMs across 7 different languages reveals substantial bias across different languages, highlighting risks for clinical deployment of LLMs in LMICs. Existing debiasing methods such as Translation Chain-of-Thought or Retrieval-augmented generation (RAG) by themselves fall short of closing this performance gap, often failing to improve performance across all languages and lacking specificity for the medical domain. To address this issue, We propose CLARA (Cross-Lingual Reflective Agentic system), a novel inference time de-biasing method leveraging retrieval augmented generation and self-verification. Our approach not only improves performance across all languages but also significantly reduces the multilingual bias gap, facilitating equitable LLM application across the globe.
Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following
Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.
The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding
The evaluation of English text embeddings has transitioned from evaluating a handful of datasets to broad coverage across many tasks through benchmarks such as MTEB. However, this is not the case for multilingual text embeddings due to a lack of available benchmarks. To address this problem, we introduce the Scandinavian Embedding Benchmark (SEB). SEB is a comprehensive framework that enables text embedding evaluation for Scandinavian languages across 24 tasks, 10 subtasks, and 4 task categories. Building on SEB, we evaluate more than 26 models, uncovering significant performance disparities between public and commercial solutions not previously captured by MTEB. We open-source SEB and integrate it with MTEB, thus bridging the text embedding evaluation gap for Scandinavian languages.
MHRC-Bench: A Multilingual Hardware Repository-Level Code Completion benchmark
Large language models (LLMs) have achieved strong performance on code completion tasks in general-purpose programming languages. However, existing repository-level code completion benchmarks focus almost exclusively on software code and largely overlook hardware description languages. In this work, we present MHRC-Bench, consisting of MHRC-Bench-Train and MHRC-Bench-Eval, the first benchmark designed for multilingual hardware code completion at the repository level. Our benchmark targets completion tasks and covers three major hardware design coding styles. Each completion target is annotated with code-structure-level and hardware-oriented semantic labels derived from concrete syntax tree analysis. We conduct a comprehensive evaluation of models on MHRC-Bench-Eval. Comprehensive evaluation results and analysis demonstrate the effectiveness of MHRC-Bench.
Multilingual LLMs Are Not Multilingual Thinkers: Evidence from Hindi Analogy Evaluation
Analogies test a model's ability to infer implicit relationships between concepts, making them a key benchmark for evaluating reasoning capabilities. While large language models (LLMs) are widely evaluated for reasoning in English, their abilities in Indic languages remain understudied, limiting our understanding of whether these models generalize across languages. To address this gap, we introduce a new Hindi Analogy Test Set (HATS), comprising 405 multiple-choice questions sourced from Indian government exams. We benchmark state-of-the-art multilingual LLMs using various prompting strategies and introduce a grounded Chain of Thought approach that leverages cognitive theories of analogical reasoning. This approach improves model performance on Hindi analogy questions. Our experiments show that models perform best with English prompts, irrespective of the prompting strategy. Our test set addresses the lack of a critical resource to evaluate LLM reasoning capabilities in Hindi.
MAPS: A Multilingual Benchmark for Global Agent Performance and Security
Agentic AI systems, which build on Large Language Models (LLMs) and interact with tools and memory, have rapidly advanced in capability and scope. Yet, since LLMs have been shown to struggle in multilingual settings, typically resulting in lower performance and reduced safety, agentic systems risk inheriting these limitations. This raises concerns about the global accessibility of such systems, as users interacting in languages other than English may encounter unreliable or security-critical agent behavior. Despite growing interest in evaluating agentic AI, existing benchmarks focus exclusively on English, leaving multilingual settings unexplored. To address this gap, we propose MAPS, a multilingual benchmark suite designed to evaluate agentic AI systems across diverse languages and tasks. MAPS builds on four widely used agentic benchmarks - GAIA (real-world tasks), SWE-bench (code generation), MATH (mathematical reasoning), and the Agent Security Benchmark (security). We translate each dataset into ten diverse languages, resulting in 805 unique tasks and 8,855 total language-specific instances. Our benchmark suite enables a systematic analysis of how multilingual contexts affect agent performance and robustness. Empirically, we observe consistent degradation in both performance and security when transitioning from English to other languages, with severity varying by task and correlating with the amount of translated input. Building on these findings, we provide actionable recommendations to guide agentic AI systems development and assessment under multilingual settings. This work establishes a standardized evaluation framework, encouraging future research towards equitable, reliable, and globally accessible agentic AI. MAPS benchmark suite is publicly available at https://huggingface.co/datasets/Fujitsu-FRE/MAPS
CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.
M2rc-Eval: Massively Multilingual Repository-level Code Completion Evaluation
Repository-level code completion has drawn great attention in software engineering, and several benchmark datasets have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC- INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark
Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
LFQA-E: Carefully Benchmarking Long-form QA Evaluation
Long-Form Question Answering (LFQA) involves generating comprehensive, paragraph-level responses to open-ended questions, which poses a significant challenge for evaluation due to the richness of information and flexible response format. Existing LFQA-evaluation benchmarks often lack reference answers and are limited in size and topic coverage, reducing their reliability. To address this gap, we introduce LFQA-E, a well-constructed, multilingual, and reference-based benchmark designed to rigorously evaluate automatic metrics for LFQA. LFQA-E comprises 1618 questions and 7323 pairwise comparisons across 15 topics, drawn from diverse sources such as online queries and examination questions, thereby enabling a comprehensive assessment of evaluation metrics. We examine five categories of metrics, encompassing 17 specific methods, using LFQA-E. The results demonstrate that none of the existing automatic metrics perform comparably to human judgments, highlighting their inability to capture the dense information in long-form responses. Furthermore, we present a detailed analysis of the failure cases and the generalization capacity of these metrics, offering insights to guide the future development of LFQA evaluation methods. The benchmark and code are available at https://github.com/YuchenFan48/LFQA-E.
INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages
Large Language Models (LLMs) have demonstrated remarkable zero-shot and few-shot capabilities in unseen tasks, including context-grounded question answering (QA) in English. However, the evaluation of LLMs' capabilities in non-English languages for context-based QA is limited by the scarcity of benchmarks in non-English languages. To address this gap, we introduce Indic-QA, the largest publicly available context-grounded question-answering dataset for 11 major Indian languages from two language families. The dataset comprises both extractive and abstractive question-answering tasks and includes existing datasets as well as English QA datasets translated into Indian languages. Additionally, we generate a synthetic dataset using the Gemini model to create question-answer pairs given a passage, which is then manually verified for quality assurance. We evaluate various multilingual Large Language Models and their instruction-fine-tuned variants on the benchmark and observe that their performance is subpar, particularly for low-resource languages. We hope that the release of this dataset will stimulate further research on the question-answering abilities of LLMs for low-resource languages.
EXAMS-V: A Multi-Discipline Multilingual Multimodal Exam Benchmark for Evaluating Vision Language Models
We introduce EXAMS-V, a new challenging multi-discipline multimodal multilingual exam benchmark for evaluating vision language models. It consists of 20,932 multiple-choice questions across 20 school disciplines covering natural science, social science, and other miscellaneous studies, e.g., religion, fine arts, business, etc. EXAMS-V includes a variety of multimodal features such as text, images, tables, figures, diagrams, maps, scientific symbols, and equations. The questions come in 11 languages from 7 language families. Unlike existing benchmarks, EXAMS-V is uniquely curated by gathering school exam questions from various countries, with a variety of education systems. This distinctive approach calls for intricate reasoning across diverse languages and relies on region-specific knowledge. Solving the problems in the dataset requires advanced perception and joint reasoning over the text and the visual content of the image. Our evaluation results demonstrate that this is a challenging dataset, which is difficult even for advanced vision-text models such as GPT-4V and Gemini; this underscores the inherent complexity of the dataset and its significance as a future benchmark.
CodeTransOcean: A Comprehensive Multilingual Benchmark for Code Translation
Recent code translation techniques exploit neural machine translation models to translate source code from one programming language to another to satisfy production compatibility or to improve efficiency of codebase maintenance. Most existing code translation datasets only focus on a single pair of popular programming languages. To advance research on code translation and meet diverse requirements of real-world applications, we construct CodeTransOcean, a large-scale comprehensive benchmark that supports the largest variety of programming languages for code translation. CodeTransOcean consists of three novel multilingual datasets, namely, MultilingualTrans supporting translations between multiple popular programming languages, NicheTrans for translating between niche programming languages and popular ones, and LLMTrans for evaluating executability of translated code by large language models (LLMs). CodeTransOcean also includes a novel cross-framework dataset, DLTrans, for translating deep learning code across different frameworks. We develop multilingual modeling approaches for code translation and demonstrate their great potential in improving the translation quality of both low-resource and high-resource language pairs and boosting the training efficiency. We also propose a novel evaluation metric Debugging Success Rate@K for program-level code translation. Last but not least, we evaluate LLM ChatGPT on our datasets and investigate its potential for fuzzy execution predictions. We build baselines for CodeTransOcean and analyze challenges of code translation for guiding future research. The CodeTransOcean datasets and code are publicly available at https://github.com/WeixiangYAN/CodeTransOcean.
Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs
Evaluating machine-generated text remains a significant challenge in NLP, especially for non-English languages. Current methodologies, including automated metrics, human assessments, and LLM-based evaluations, predominantly focus on English, revealing a significant gap in multilingual evaluation frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an extensible framework that includes evaluator LLMs (Hercule) and a novel test set (Recon) specifically designed for multilingual evaluation. Our test set features 500 human-annotated instructions spanning various task capabilities along with human judgment scores across six languages. This would enable benchmarking of general-purpose multilingual LLMs and facilitate meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a cross-lingual evaluation model that addresses the scarcity of reference answers in the target language by learning to assign scores to responses based on easily available reference answers in English. Our experiments demonstrate that Hercule aligns more closely with human judgments compared to proprietary models, demonstrating the effectiveness of such cross-lingual evaluation in low resource scenarios. Further, it is also effective in zero-shot evaluation on unseen languages. This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment. All code, datasets, and models will be publicly available to enable further research in this important area.
M5 -- A Diverse Benchmark to Assess the Performance of Large Multimodal Models Across Multilingual and Multicultural Vision-Language Tasks
Since the release of ChatGPT, the field of Natural Language Processing has experienced rapid advancements, particularly in Large Language Models (LLMs) and their multimodal counterparts, Large Multimodal Models (LMMs). Despite their impressive capabilities, LLMs often exhibit significant performance disparities across different languages and cultural contexts, as demonstrated by various text-only benchmarks. However, current research lacks such benchmarks for multimodal visio-linguistic settings. This work fills this gap by introducing M5, the first comprehensive benchmark designed to evaluate LMMs on diverse vision-language tasks within a multilingual and multicultural context. M5 includes eight datasets covering five tasks and 41 languages, with a focus on underrepresented languages and culturally diverse images. Furthermore, we introduce two novel datasets, M5-VGR and M5-VLOD, including a new Visio-Linguistic Outlier Detection task, in which all evaluated open-source models fail to significantly surpass the random baseline. Through extensive evaluation and analyses, we highlight substantial task-agnostic performance disparities between high- and low-resource languages. Moreover, we show that larger models do not necessarily outperform smaller ones in a multilingual setting.
MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems
Traditional Retrieval-Augmented Generation (RAG) benchmarks rely on different heuristic-based metrics for evaluation, but these require human preferences as ground truth for reference. In contrast, arena-based benchmarks, where two models compete each other, require an expensive Large Language Model (LLM) as a judge for a reliable evaluation. We present an easy and efficient technique to get the best of both worlds. The idea is to train a learning to rank model as a "surrogate" judge using RAG-based evaluation heuristics as input, to produce a synthetic arena-based leaderboard. Using this idea, We develop MIRAGE-Bench, a standardized arena-based multilingual RAG benchmark for 18 diverse languages on Wikipedia. The benchmark is constructed using MIRACL, a retrieval dataset, and extended for multilingual generation evaluation. MIRAGE-Bench evaluates RAG extensively coupling both heuristic features and LLM as a judge evaluator. In our work, we benchmark 19 diverse multilingual-focused LLMs, and achieve a high correlation (Kendall Tau (tau) = 0.909) using our surrogate judge learned using heuristic features with pairwise evaluations and between GPT-4o as a teacher on the MIRAGE-Bench leaderboard using the Bradley-Terry framework. We observe proprietary and large open-source LLMs currently dominate in multilingual RAG. MIRAGE-Bench is available at: https://github.com/vectara/mirage-bench.
MUG-Eval: A Proxy Evaluation Framework for Multilingual Generation Capabilities in Any Language
Evaluating text generation capabilities of large language models (LLMs) is challenging, particularly for low-resource languages where methods for direct assessment are scarce. We propose MUG-Eval, a novel framework that evaluates LLMs' multilingual generation capabilities by transforming existing benchmarks into conversational tasks and measuring the LLMs' accuracies on those tasks. We specifically designed these conversational tasks to require effective communication in the target language. Then, we simply use task success rate as a proxy of successful conversation generation. Our approach offers two key advantages: it is independent of language-specific NLP tools or annotated datasets, which are limited for most languages, and it does not rely on LLMs-as-judges, whose evaluation quality degrades outside a few high-resource languages. We evaluate 8 LLMs across 30 languages spanning high, mid, and low-resource categories, and we find that MUG-Eval correlates strongly with established benchmarks (r > 0.75) while enabling standardized comparisons across languages and models. Our framework provides a robust and resource-efficient solution for evaluating multilingual generation that can be extended to thousands of languages.
SwiftEval: Developing a Language-Specific Benchmark for LLM-generated Code Evaluation
In recent years, large language models (LLMs) have showcased significant advancements in code generation. However, most evaluation benchmarks are primarily oriented towards Python, making it difficult to evaluate other programming languages, such as Swift, with high quality. By examining widely established multilingual benchmarks like HumanEval-XL and MultiPL-E, we identified critical issues specific to their Swift components, making them insufficient or even irrelevant for assessing LLM coding capabilities on Swift. Unlike these existing approaches, which prioritize rapid scaling and generalization by automatically translating Python-centric benchmarks with LLMs, we adopt a quality-over-quantity methodology. We present SwiftEval, the first Swift-oriented benchmark consisting of 28 carefully hand-crafted problems, and evaluate 44 popular Code LLMs on it. Our results show significant LLM scores drop for problems requiring language-specific features, most noticeable in the models of smaller sizes.
XMAD-Bench: Cross-Domain Multilingual Audio Deepfake Benchmark
Recent advances in audio generation led to an increasing number of deepfakes, making the general public more vulnerable to financial scams, identity theft, and misinformation. Audio deepfake detectors promise to alleviate this issue, with many recent studies reporting accuracy rates close to 99%. However, these methods are typically tested in an in-domain setup, where the deepfake samples from the training and test sets are produced by the same generative models. To this end, we introduce XMAD-Bench, a large-scale cross-domain multilingual audio deepfake benchmark comprising 668.8 hours of real and deepfake speech. In our novel dataset, the speakers, the generative methods, and the real audio sources are distinct across training and test splits. This leads to a challenging cross-domain evaluation setup, where audio deepfake detectors can be tested ``in the wild''. Our in-domain and cross-domain experiments indicate a clear disparity between the in-domain performance of deepfake detectors, which is usually as high as 100%, and the cross-domain performance of the same models, which is sometimes similar to random chance. Our benchmark highlights the need for the development of robust audio deepfake detectors, which maintain their generalization capacity across different languages, speakers, generative methods, and data sources. Our benchmark is publicly released at https://github.com/ristea/xmad-bench/.
xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code Understanding, Generation, Translation and Retrieval
The ability to solve problems is a hallmark of intelligence and has been an enduring goal in AI. AI systems that can create programs as solutions to problems or assist developers in writing programs can increase productivity and make programming more accessible. Recently, pre-trained large language models have shown impressive abilities in generating new codes from natural language descriptions, repairing buggy codes, translating codes between languages, and retrieving relevant code segments. However, the evaluation of these models has often been performed in a scattered way on only one or two specific tasks, in a few languages, at a partial granularity (e.g., function) level and in many cases without proper training data. Even more concerning is that in most cases the evaluation of generated codes has been done in terms of mere lexical overlap rather than actual execution whereas semantic similarity (or equivalence) of two code segments depends only on their ``execution similarity'', i.e., being able to get the same output for a given input.
mStyleDistance: Multilingual Style Embeddings and their Evaluation
Style embeddings are useful for stylistic analysis and style transfer; however, only English style embeddings have been made available. We introduce Multilingual StyleDistance (mStyleDistance), a multilingual style embedding model trained using synthetic data and contrastive learning. We train the model on data from nine languages and create a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess the embeddings' quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing models on these multilingual style benchmarks and generalize well to unseen features and languages. We make our model publicly available at https://huggingface.co/StyleDistance/mstyledistance .
DialectalArabicMMLU: Benchmarking Dialectal Capabilities in Arabic and Multilingual Language Models
We present DialectalArabicMMLU, a new benchmark for evaluating the performance of large language models (LLMs) across Arabic dialects. While recently developed Arabic and multilingual benchmarks have advanced LLM evaluation for Modern Standard Arabic (MSA), dialectal varieties remain underrepresented despite their prevalence in everyday communication. DialectalArabicMMLU extends the MMLU-Redux framework through manual translation and adaptation of 3K multiple-choice question-answer pairs into five major dialects (Syrian, Egyptian, Emirati, Saudi, and Moroccan), yielding a total of 15K QA pairs across 32 academic and professional domains (22K QA pairs when also including English and MSA). The benchmark enables systematic assessment of LLM reasoning and comprehension beyond MSA, supporting both task-based and linguistic analysis. We evaluate 19 open-weight Arabic and multilingual LLMs (1B-13B parameters) and report substantial performance variation across dialects, revealing persistent gaps in dialectal generalization. DialectalArabicMMLU provides the first unified, human-curated resource for measuring dialectal understanding in Arabic, thus promoting more inclusive evaluation and future model development.
WorldMedQA-V: a multilingual, multimodal medical examination dataset for multimodal language models evaluation
Multimodal/vision language models (VLMs) are increasingly being deployed in healthcare settings worldwide, necessitating robust benchmarks to ensure their safety, efficacy, and fairness. Multiple-choice question and answer (QA) datasets derived from national medical examinations have long served as valuable evaluation tools, but existing datasets are largely text-only and available in a limited subset of languages and countries. To address these challenges, we present WorldMedQA-V, an updated multilingual, multimodal benchmarking dataset designed to evaluate VLMs in healthcare. WorldMedQA-V includes 568 labeled multiple-choice QAs paired with 568 medical images from four countries (Brazil, Israel, Japan, and Spain), covering original languages and validated English translations by native clinicians, respectively. Baseline performance for common open- and closed-source models are provided in the local language and English translations, and with and without images provided to the model. The WorldMedQA-V benchmark aims to better match AI systems to the diverse healthcare environments in which they are deployed, fostering more equitable, effective, and representative applications.
Expanding FLORES+ Benchmark for more Low-Resource Settings: Portuguese-Emakhuwa Machine Translation Evaluation
As part of the Open Language Data Initiative shared tasks, we have expanded the FLORES+ evaluation set to include Emakhuwa, a low-resource language widely spoken in Mozambique. We translated the dev and devtest sets from Portuguese into Emakhuwa, and we detail the translation process and quality assurance measures used. Our methodology involved various quality checks, including post-editing and adequacy assessments. The resulting datasets consist of multiple reference sentences for each source. We present baseline results from training a Neural Machine Translation system and fine-tuning existing multilingual translation models. Our findings suggest that spelling inconsistencies remain a challenge in Emakhuwa. Additionally, the baseline models underperformed on this evaluation set, underscoring the necessity for further research to enhance machine translation quality for Emakhuwa. The data is publicly available at https://huggingface.co/datasets/LIACC/Emakhuwa-FLORES.
M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models
Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at https://github.com/DAMO-NLP-SG/M3Exam.
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.
