Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDoctorRAG: Medical RAG Fusing Knowledge with Patient Analogy through Textual Gradients
Existing medical RAG systems mainly leverage knowledge from medical knowledge bases, neglecting the crucial role of experiential knowledge derived from similar patient cases -- a key component of human clinical reasoning. To bridge this gap, we propose DoctorRAG, a RAG framework that emulates doctor-like reasoning by integrating both explicit clinical knowledge and implicit case-based experience. DoctorRAG enhances retrieval precision by first allocating conceptual tags for queries and knowledge sources, together with a hybrid retrieval mechanism from both relevant knowledge and patient. In addition, a Med-TextGrad module using multi-agent textual gradients is integrated to ensure that the final output adheres to the retrieved knowledge and patient query. Comprehensive experiments on multilingual, multitask datasets demonstrate that DoctorRAG significantly outperforms strong baseline RAG models and gains improvements from iterative refinements. Our approach generates more accurate, relevant, and comprehensive responses, taking a step towards more doctor-like medical reasoning systems.
Med-PRM: Medical Reasoning Models with Stepwise, Guideline-verified Process Rewards
Large language models have shown promise in clinical decision making, but current approaches struggle to localize and correct errors at specific steps of the reasoning process. This limitation is critical in medicine, where identifying and addressing reasoning errors is essential for accurate diagnosis and effective patient care. We introduce Med-PRM, a process reward modeling framework that leverages retrieval-augmented generation to verify each reasoning step against established medical knowledge bases. By verifying intermediate reasoning steps with evidence retrieved from clinical guidelines and literature, our model can precisely assess the reasoning quality in a fine-grained manner. Evaluations on five medical QA benchmarks and two open-ended diagnostic tasks demonstrate that Med-PRM achieves state-of-the-art performance, with improving the performance of base models by up to 13.50% using Med-PRM. Moreover, we demonstrate the generality of Med-PRM by integrating it in a plug-and-play fashion with strong policy models such as Meerkat, achieving over 80\% accuracy on MedQA for the first time using small-scale models of 8 billion parameters. Our code and data are available at: https://med-prm.github.io/
Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation
Large language models (LLMs) have shown impressive capabilities in natural language processing tasks, including dialogue generation. This research aims to conduct a novel comparative analysis of two prominent techniques, fine-tuning with LoRA (Low-Rank Adaptation) and the Retrieval-Augmented Generation (RAG) framework, in the context of doctor-patient chat conversations with multiple datasets of mixed medical domains. The analysis involves three state-of-the-art models: Llama-2, GPT, and the LSTM model. Employing real-world doctor-patient dialogues, we comprehensively evaluate the performance of models, assessing key metrics such as language quality (perplexity, BLEU score), factual accuracy (fact-checking against medical knowledge bases), adherence to medical guidelines, and overall human judgments (coherence, empathy, safety). The findings provide insights into the strengths and limitations of each approach, shedding light on their suitability for healthcare applications. Furthermore, the research investigates the robustness of the models in handling diverse patient queries, ranging from general health inquiries to specific medical conditions. The impact of domain-specific knowledge integration is also explored, highlighting the potential for enhancing LLM performance through targeted data augmentation and retrieval strategies.
MedEdit: Model Editing for Medical Question Answering with External Knowledge Bases
Large Language Models (LLMs), although powerful in general domains, often perform poorly on domain-specific tasks like medical question answering (QA). Moreover, they tend to function as "black-boxes," making it challenging to modify their behavior. Addressing this, our study delves into model editing utilizing in-context learning, aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then we incorporate them into the query prompt for the LLM. Focusing on medical QA using the MedQA-SMILE dataset, we evaluate the impact of different retrieval models and the number of facts provided to the LLM. Notably, our edited Vicuna model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of model editing to enhance LLM performance, offering a practical approach to mitigate the challenges of black-box LLMs.
A Comparative Study on Automatic Coding of Medical Letters with Explainability
This study aims to explore the implementation of Natural Language Processing (NLP) and machine learning (ML) techniques to automate the coding of medical letters with visualised explainability and light-weighted local computer settings. Currently in clinical settings, coding is a manual process that involves assigning codes to each condition, procedure, and medication in a patient's paperwork (e.g., 56265001 heart disease using SNOMED CT code). There are preliminary research on automatic coding in this field using state-of-the-art ML models; however, due to the complexity and size of the models, the real-world deployment is not achieved. To further facilitate the possibility of automatic coding practice, we explore some solutions in a local computer setting; in addition, we explore the function of explainability for transparency of AI models. We used the publicly available MIMIC-III database and the HAN/HLAN network models for ICD code prediction purposes. We also experimented with the mapping between ICD and SNOMED CT knowledge bases. In our experiments, the models provided useful information for 97.98\% of codes. The result of this investigation can shed some light on implementing automatic clinical coding in practice, such as in hospital settings, on the local computers used by clinicians , project page https://github.com/Glenj01/Medical-Coding.
SearchRAG: Can Search Engines Be Helpful for LLM-based Medical Question Answering?
Large Language Models (LLMs) have shown remarkable capabilities in general domains but often struggle with tasks requiring specialized knowledge. Conventional Retrieval-Augmented Generation (RAG) techniques typically retrieve external information from static knowledge bases, which can be outdated or incomplete, missing fine-grained clinical details essential for accurate medical question answering. In this work, we propose SearchRAG, a novel framework that overcomes these limitations by leveraging real-time search engines. Our method employs synthetic query generation to convert complex medical questions into search-engine-friendly queries and utilizes uncertainty-based knowledge selection to filter and incorporate the most relevant and informative medical knowledge into the LLM's input. Experimental results demonstrate that our method significantly improves response accuracy in medical question answering tasks, particularly for complex questions requiring detailed and up-to-date knowledge.
Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.
Expert-Guided Prompting and Retrieval-Augmented Generation for Emergency Medical Service Question Answering
Large language models (LLMs) have shown promise in medical question answering, yet they often overlook the domain-specific expertise that professionals depend on, such as the clinical subject areas (e.g., trauma, airway) and the certification level (e.g., EMT, Paramedic). Existing approaches typically apply general-purpose prompting or retrieval strategies without leveraging this structured context, limiting performance in high-stakes settings. We address this gap with EMSQA, an 24.3K-question multiple-choice dataset spanning 10 clinical subject areas and 4 certification levels, accompanied by curated, subject area-aligned knowledge bases (40K documents and 2M tokens). Building on EMSQA, we introduce (i) Expert-CoT, a prompting strategy that conditions chain-of-thought (CoT) reasoning on specific clinical subject area and certification level, and (ii) ExpertRAG, a retrieval-augmented generation pipeline that grounds responses in subject area-aligned documents and real-world patient data. Experiments on 4 LLMs show that Expert-CoT improves up to 2.05% over vanilla CoT prompting. Additionally, combining Expert-CoT with ExpertRAG yields up to a 4.59% accuracy gain over standard RAG baselines. Notably, the 32B expertise-augmented LLMs pass all the computer-adaptive EMS certification simulation exams.
MedBrowseComp: Benchmarking Medical Deep Research and Computer Use
Large language models (LLMs) are increasingly envisioned as decision-support tools in clinical practice, yet safe clinical reasoning demands integrating heterogeneous knowledge bases -- trials, primary studies, regulatory documents, and cost data -- under strict accuracy constraints. Existing evaluations often rely on synthetic prompts, reduce the task to single-hop factoid queries, or conflate reasoning with open-ended generation, leaving their real-world utility unclear. To close this gap, we present MedBrowseComp, the first benchmark that systematically tests an agent's ability to reliably retrieve and synthesize multi-hop medical facts from live, domain-specific knowledge bases. MedBrowseComp contains more than 1,000 human-curated questions that mirror clinical scenarios where practitioners must reconcile fragmented or conflicting information to reach an up-to-date conclusion. Applying MedBrowseComp to frontier agentic systems reveals performance shortfalls as low as ten percent, exposing a critical gap between current LLM capabilities and the rigor demanded in clinical settings. MedBrowseComp therefore offers a clear testbed for reliable medical information seeking and sets concrete goals for future model and toolchain upgrades. You can visit our project page at: https://moreirap12.github.io/mbc-browse-app/
Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions
The emergent abilities of large language models (LLMs) have demonstrated great potential in solving medical questions. They can possess considerable medical knowledge, but may still hallucinate and are inflexible in the knowledge updates. While Retrieval-Augmented Generation (RAG) has been proposed to enhance the medical question-answering capabilities of LLMs with external knowledge bases, it may still fail in complex cases where multiple rounds of information-seeking are required. To address such an issue, we propose iterative RAG for medicine (i-MedRAG), where LLMs can iteratively ask follow-up queries based on previous information-seeking attempts. In each iteration of i-MedRAG, the follow-up queries will be answered by a vanilla RAG system and they will be further used to guide the query generation in the next iteration. Our experiments show the improved performance of various LLMs brought by i-MedRAG compared with vanilla RAG on complex questions from clinical vignettes in the United States Medical Licensing Examination (USMLE), as well as various knowledge tests in the Massive Multitask Language Understanding (MMLU) dataset. Notably, our zero-shot i-MedRAG outperforms all existing prompt engineering and fine-tuning methods on GPT-3.5, achieving an accuracy of 69.68\% on the MedQA dataset. In addition, we characterize the scaling properties of i-MedRAG with different iterations of follow-up queries and different numbers of queries per iteration. Our case studies show that i-MedRAG can flexibly ask follow-up queries to form reasoning chains, providing an in-depth analysis of medical questions. To the best of our knowledge, this is the first-of-its-kind study on incorporating follow-up queries into medical RAG.
MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training in Radiology
In this paper, we consider enhancing medical visual-language pre-training (VLP) with domain-specific knowledge, by exploiting the paired image-text reports from the radiological daily practice. In particular, we make the following contributions: First, unlike existing works that directly process the raw reports, we adopt a novel triplet extraction module to extract the medical-related information, avoiding unnecessary complexity from language grammar and enhancing the supervision signals; Second, we propose a novel triplet encoding module with entity translation by querying a knowledge base, to exploit the rich domain knowledge in medical field, and implicitly build relationships between medical entities in the language embedding space; Third, we propose to use a Transformer-based fusion model for spatially aligning the entity description with visual signals at the image patch level, enabling the ability for medical diagnosis; Fourth, we conduct thorough experiments to validate the effectiveness of our architecture, and benchmark on numerous public benchmarks, e.g., ChestX-ray14, RSNA Pneumonia, SIIM-ACR Pneumothorax, COVIDx CXR-2, COVID Rural, and EdemaSeverity. In both zero-shot and fine-tuning settings, our model has demonstrated strong performance compared with the former methods on disease classification and grounding.
Medical Question Understanding and Answering with Knowledge Grounding and Semantic Self-Supervision
Current medical question answering systems have difficulty processing long, detailed and informally worded questions submitted by patients, called Consumer Health Questions (CHQs). To address this issue, we introduce a medical question understanding and answering system with knowledge grounding and semantic self-supervision. Our system is a pipeline that first summarizes a long, medical, user-written question, using a supervised summarization loss. Then, our system performs a two-step retrieval to return answers. The system first matches the summarized user question with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of relevant sentences from the corresponding answer document. In the absence of labels for question matching or answer relevance, we design 3 novel, self-supervised and semantically-guided losses. We evaluate our model against two strong retrieval-based question answering baselines. Evaluators ask their own questions and rate the answers retrieved by our baselines and own system according to their relevance. They find that our system retrieves more relevant answers, while achieving speeds 20 times faster. Our self-supervised losses also help the summarizer achieve higher scores in ROUGE, as well as in human evaluation metrics. We release our code to encourage further research.
SLAKE: A Semantically-Labeled Knowledge-Enhanced Dataset for Medical Visual Question Answering
Medical visual question answering (Med-VQA) has tremendous potential in healthcare. However, the development of this technology is hindered by the lacking of publicly-available and high-quality labeled datasets for training and evaluation. In this paper, we present a large bilingual dataset, SLAKE, with comprehensive semantic labels annotated by experienced physicians and a new structural medical knowledge base for Med-VQA. Besides, SLAKE includes richer modalities and covers more human body parts than the currently available dataset. We show that SLAKE can be used to facilitate the development and evaluation of Med-VQA systems. The dataset can be downloaded from http://www.med-vqa.com/slake.
LLMs in Biomedicine: A study on clinical Named Entity Recognition
Large Language Models (LLMs) demonstrate remarkable versatility in various NLP tasks but encounter distinct challenges in biomedical due to the complexities of language and data scarcity. This paper investigates LLMs application in the biomedical domain by exploring strategies to enhance their performance for the NER task. Our study reveals the importance of meticulously designed prompts in the biomedical. Strategic selection of in-context examples yields a marked improvement, offering ~15-20\% increase in F1 score across all benchmark datasets for biomedical few-shot NER. Additionally, our results indicate that integrating external biomedical knowledge via prompting strategies can enhance the proficiency of general-purpose LLMs to meet the specialized needs of biomedical NER. Leveraging a medical knowledge base, our proposed method, DiRAG, inspired by Retrieval-Augmented Generation (RAG), can boost the zero-shot F1 score of LLMs for biomedical NER. Code is released at https://github.com/masoud-monajati/LLM_Bio_NER
LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies
Generating Natural Language Explanations (NLEs) for model predictions on medical images, particularly those depicting thoracic pathologies, remains a critical and challenging task. Existing methodologies often struggle due to general models' insufficient domain-specific medical knowledge and privacy concerns associated with retrieval-based augmentation techniques. To address these issues, we propose a novel Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore, which enhances the model's understanding by incorporating additional domain-specific medical knowledge essential for generating accurate and informative NLEs. Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval. The KG datastore is designed as a plug-and-play module, allowing for seamless integration with various model architectures. We introduce and evaluate three distinct frameworks within this paradigm: KG-LLaVA, which integrates the pre-trained LLaVA model with KG-RAG; Med-XPT, a custom framework combining MedCLIP, a transformer-based projector, and GPT-2; and Bio-LLaVA, which adapts LLaVA by incorporating the Bio-ViT-L vision model. These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results, underscoring the effectiveness of KG augmentation in generating high-quality NLEs for thoracic pathologies.
Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding
Large Language Models (LLMs) present immense potential in the medical field, yet concerns over data privacy, regulatory compliance, and model stability restrict their widespread adoption. Although the distillation of high-performing closed-source LLMs has proven effective for general tasks, their application in healthcare is limited due to reduced domain knowledge and remnants of alignment behavior hindering clinical tasks. To address these challenges, we propose Dialogue-Based Knowledge Encoding (DBKE). DBKE enhances models' implicit knowledge base and primes them for conversational recall, augmenting their conversational capabilities and enabling a soft alignment for subsequent use cases. By transforming dense academic source text into synthetic dialogue, DBKE broadens the model's knowledge base and enables a soft alignment that guides downstream behaviours. We present Clinical Camel, an open-source, healthcare-focused conversational model, to showcase the effectiveness of DBKE. Clinical Camel outperforms GPT-3.5 on the United States Medical Licensing Examination (USMLE) Step 1 and Step 3 with scores of 53.2 % and 58.2 %, respectively, compared to GPT-3.5's scores of 36.1 % and 55.7 %. Clinical Camel adeptly handles multi-stage clinical case problems, provides adaptive counseling, and generates clinical notes. However, it is prone to hallucinations, which pose a significant obstacle in safety-critical settings. The performance of Clinical Camel underscores the importance of continued research and development of open-source models for the safe and effective integration of LLMs in healthcare settings.
Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses
To generate evidence regarding the safety and efficacy of artificial intelligence (AI) enabled medical devices, AI models need to be evaluated on a diverse population of patient cases, some of which may not be readily available. We propose an evaluation approach for testing medical imaging AI models that relies on in silico imaging pipelines in which stochastic digital models of human anatomy (in object space) with and without pathology are imaged using a digital replica imaging acquisition system to generate realistic synthetic image datasets. Here, we release M-SYNTH, a dataset of cohorts with four breast fibroglandular density distributions imaged at different exposure levels using Monte Carlo x-ray simulations with the publicly available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) toolkit. We utilize the synthetic dataset to analyze AI model performance and find that model performance decreases with increasing breast density and increases with higher mass density, as expected. As exposure levels decrease, AI model performance drops with the highest performance achieved at exposure levels lower than the nominal recommended dose for the breast type.
S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images
Development of artificial intelligence (AI) techniques in medical imaging requires access to large-scale and diverse datasets for training and evaluation. In dermatology, obtaining such datasets remains challenging due to significant variations in patient populations, illumination conditions, and acquisition system characteristics. In this work, we propose S-SYNTH, the first knowledge-based, adaptable open-source skin simulation framework to rapidly generate synthetic skin, 3D models and digitally rendered images, using an anatomically inspired multi-layer, multi-component skin and growing lesion model. The skin model allows for controlled variation in skin appearance, such as skin color, presence of hair, lesion shape, and blood fraction among other parameters. We use this framework to study the effect of possible variations on the development and evaluation of AI models for skin lesion segmentation, and show that results obtained using synthetic data follow similar comparative trends as real dermatologic images, while mitigating biases and limitations from existing datasets including small dataset size, lack of diversity, and underrepresentation.
MedSyn: LLM-based Synthetic Medical Text Generation Framework
Generating synthetic text addresses the challenge of data availability in privacy-sensitive domains such as healthcare. This study explores the applicability of synthetic data in real-world medical settings. We introduce MedSyn, a novel medical text generation framework that integrates large language models with a Medical Knowledge Graph (MKG). We use MKG to sample prior medical information for the prompt and generate synthetic clinical notes with GPT-4 and fine-tuned LLaMA models. We assess the benefit of synthetic data through application in the ICD code prediction task. Our research indicates that synthetic data can increase the classification accuracy of vital and challenging codes by up to 17.8% compared to settings without synthetic data. Furthermore, to provide new data for further research in the healthcare domain, we present the largest open-source synthetic dataset of clinical notes for the Russian language, comprising over 41k samples covering 219 ICD-10 codes.
DeViDe: Faceted medical knowledge for improved medical vision-language pre-training
Vision-language pre-training for chest X-rays has made significant strides, primarily by utilizing paired radiographs and radiology reports. However, existing approaches often face challenges in encoding medical knowledge effectively. While radiology reports provide insights into the current disease manifestation, medical definitions (as used by contemporary methods) tend to be overly abstract, creating a gap in knowledge. To address this, we propose DeViDe, a novel transformer-based method that leverages radiographic descriptions from the open web. These descriptions outline general visual characteristics of diseases in radiographs, and when combined with abstract definitions and radiology reports, provide a holistic snapshot of knowledge. DeViDe incorporates three key features for knowledge-augmented vision language alignment: First, a large-language model-based augmentation is employed to homogenise medical knowledge from diverse sources. Second, this knowledge is aligned with image information at various levels of granularity. Third, a novel projection layer is proposed to handle the complexity of aligning each image with multiple descriptions arising in a multi-label setting. In zero-shot settings, DeViDe performs comparably to fully supervised models on external datasets and achieves state-of-the-art results on three large-scale datasets. Additionally, fine-tuning DeViDe on four downstream tasks and six segmentation tasks showcases its superior performance across data from diverse distributions.
Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
The rapid advancement of language models has demonstrated the potential of artificial intelligence in the healthcare industry. However, small language models struggle with specialized domains in low-resource languages like Persian. While numerous medical-domain websites exist in Persian, no curated dataset or corpus has been available making ours the first of its kind. This study explores the enhancement of medical knowledge in a small language model by leveraging accessible online data, including a crawled corpus from medical magazines and a dataset of real doctor-patient QA pairs. We fine-tuned a baseline model using our curated data to improve its medical knowledge. Benchmark evaluations demonstrate that the fine-tuned model achieves improved accuracy in medical question answering and provides better responses compared to its baseline. This work highlights the potential of leveraging open-access online data to enrich small language models in medical fields, providing a novel solution for Persian medical AI applications suitable for resource-constrained environments.
T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
One of the key impediments for developing and assessing robust medical imaging algorithms is limited access to large-scale datasets with suitable annotations. Synthetic data generated with plausible physical and biological constraints may address some of these data limitations. We propose the use of physics simulations to generate synthetic images with pixel-level segmentation annotations, which are notoriously difficult to obtain. Specifically, we apply this approach to breast imaging analysis and release T-SYNTH, a large-scale open-source dataset of paired 2D digital mammography (DM) and 3D digital breast tomosynthesis (DBT) images. Our initial experimental results indicate that T-SYNTH images show promise for augmenting limited real patient datasets for detection tasks in DM and DBT. Our data and code are publicly available at https://github.com/DIDSR/tsynth-release.
Polish Medical Exams: A new dataset for cross-lingual medical knowledge transfer assessment
Large Language Models (LLMs) have demonstrated significant potential in handling specialized tasks, including medical problem-solving. However, most studies predominantly focus on English-language contexts. This study introduces a novel benchmark dataset based on Polish medical licensing and specialization exams (LEK, LDEK, PES) taken by medical doctor candidates and practicing doctors pursuing specialization. The dataset was web-scraped from publicly available resources provided by the Medical Examination Center and the Chief Medical Chamber. It comprises over 24,000 exam questions, including a subset of parallel Polish-English corpora, where the English portion was professionally translated by the examination center for foreign candidates. By creating a structured benchmark from these existing exam questions, we systematically evaluate state-of-the-art LLMs, including general-purpose, domain-specific, and Polish-specific models, and compare their performance against human medical students. Our analysis reveals that while models like GPT-4o achieve near-human performance, significant challenges persist in cross-lingual translation and domain-specific understanding. These findings underscore disparities in model performance across languages and medical specialties, highlighting the limitations and ethical considerations of deploying LLMs in clinical practice.
Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine
Biomedical knowledge is uniquely complex and structured, requiring distinct reasoning strategies compared to other scientific disciplines like physics or chemistry. Biomedical scientists do not rely on a single approach to reasoning; instead, they use various strategies, including rule-based, prototype-based, and case-based reasoning. This diversity calls for flexible approaches that accommodate multiple reasoning strategies while leveraging in-domain knowledge. We introduce KGARevion, a knowledge graph (KG) based agent designed to address the complexity of knowledge-intensive medical queries. Upon receiving a query, KGARevion generates relevant triplets by using the knowledge base of the LLM. These triplets are then verified against a grounded KG to filter out erroneous information and ensure that only accurate, relevant data contribute to the final answer. Unlike RAG-based models, this multi-step process ensures robustness in reasoning while adapting to different models of medical reasoning. Evaluations on four gold-standard medical QA datasets show that KGARevion improves accuracy by over 5.2%, outperforming 15 models in handling complex medical questions. To test its capabilities, we curated three new medical QA datasets with varying levels of semantic complexity, where KGARevion achieved a 10.4% improvement in accuracy.
MedAgent-Pro: Towards Multi-modal Evidence-based Medical Diagnosis via Reasoning Agentic Workflow
Developing reliable AI systems to assist human clinicians in multi-modal medical diagnosis has long been a key objective for researchers. Recently, Multi-modal Large Language Models (MLLMs) have gained significant attention and achieved success across various domains. With strong reasoning capabilities and the ability to perform diverse tasks based on user instructions, they hold great potential for enhancing medical diagnosis. However, directly applying MLLMs to the medical domain still presents challenges. They lack detailed perception of visual inputs, limiting their ability to perform quantitative image analysis, which is crucial for medical diagnostics. Additionally, MLLMs often exhibit hallucinations and inconsistencies in reasoning, whereas clinical diagnoses must adhere strictly to established criteria. To address these challenges, we propose MedAgent-Pro, an evidence-based reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses. This is accomplished through a hierarchical workflow: at the task level, knowledge-based reasoning generate reliable diagnostic plans for specific diseases following retrieved clinical criteria. While at the case level, multiple tool agents process multi-modal inputs, analyze different indicators according to the plan, and provide a final diagnosis based on both quantitative and qualitative evidence. Comprehensive experiments on both 2D and 3D medical diagnosis tasks demonstrate the superiority and effectiveness of MedAgent-Pro, while case studies further highlight its reliability and interpretability. The code is available at https://github.com/jinlab-imvr/MedAgent-Pro.
Integration of Domain Knowledge using Medical Knowledge Graph Deep Learning for Cancer Phenotyping
A key component of deep learning (DL) for natural language processing (NLP) is word embeddings. Word embeddings that effectively capture the meaning and context of the word that they represent can significantly improve the performance of downstream DL models for various NLP tasks. Many existing word embeddings techniques capture the context of words based on word co-occurrence in documents and text; however, they often cannot capture broader domain-specific relationships between concepts that may be crucial for the NLP task at hand. In this paper, we propose a method to integrate external knowledge from medical terminology ontologies into the context captured by word embeddings. Specifically, we use a medical knowledge graph, such as the unified medical language system (UMLS), to find connections between clinical terms in cancer pathology reports. This approach aims to minimize the distance between connected clinical concepts. We evaluate the proposed approach using a Multitask Convolutional Neural Network (MT-CNN) to extract six cancer characteristics -- site, subsite, laterality, behavior, histology, and grade -- from a dataset of ~900K cancer pathology reports. The results show that the MT-CNN model which uses our domain informed embeddings outperforms the same MT-CNN using standard word2vec embeddings across all tasks, with an improvement in the overall micro- and macro-F1 scores by 4.97\%and 22.5\%, respectively.
From Beginner to Expert: Modeling Medical Knowledge into General LLMs
Recently, large language model (LLM) based artificial intelligence (AI) systems have demonstrated remarkable capabilities in natural language understanding and generation. However, these models face a significant challenge when it comes to sensitive applications, such as reasoning over medical knowledge and answering medical questions in a physician-like manner. Prior studies attempted to overcome this challenge by increasing the model size (>100B) to learn more general medical knowledge, while there is still room for improvement in LLMs with smaller-scale model sizes (<100B). In this work, we start from a pre-trained general LLM model (AntGLM-10B) and fine-tune it from a medical beginner towards a medical expert (called AntGLM-Med-10B), which leverages a 3-stage optimization procedure, i.e., general medical knowledge injection, medical domain instruction tuning, and specific medical task adaptation. Our contributions are threefold: (1) We specifically investigate how to adapt a pre-trained general LLM in medical domain, especially for a specific medical task. (2) We collect and construct large-scale medical datasets for each stage of the optimization process. These datasets encompass various data types and tasks, such as question-answering, medical reasoning, multi-choice questions, and medical conversations. (3) Specifically for multi-choice questions in the medical domain, we propose a novel Verification-of-Choice approach for prompting engineering, which significantly enhances the reasoning ability of LLMs. Remarkably, by combining the above approaches, our AntGLM-Med-10B model can outperform the most of LLMs on PubMedQA, including both general and medical LLMs, even when these LLMs have larger model size.
MedKGent: A Large Language Model Agent Framework for Constructing Temporally Evolving Medical Knowledge Graph
The rapid expansion of medical literature presents growing challenges for structuring and integrating domain knowledge at scale. Knowledge Graphs (KGs) offer a promising solution by enabling efficient retrieval, automated reasoning, and knowledge discovery. However, current KG construction methods often rely on supervised pipelines with limited generalizability or naively aggregate outputs from Large Language Models (LLMs), treating biomedical corpora as static and ignoring the temporal dynamics and contextual uncertainty of evolving knowledge. To address these limitations, we introduce MedKGent, a LLM agent framework for constructing temporally evolving medical KGs. Leveraging over 10 million PubMed abstracts published between 1975 and 2023, we simulate the emergence of biomedical knowledge via a fine-grained daily time series. MedKGent incrementally builds the KG in a day-by-day manner using two specialized agents powered by the Qwen2.5-32B-Instruct model. The Extractor Agent identifies knowledge triples and assigns confidence scores via sampling-based estimation, which are used to filter low-confidence extractions and inform downstream processing. The Constructor Agent incrementally integrates the retained triples into a temporally evolving graph, guided by confidence scores and timestamps to reinforce recurring knowledge and resolve conflicts. The resulting KG contains 156,275 entities and 2,971,384 relational triples. Quality assessments by two SOTA LLMs and three domain experts demonstrate an accuracy approaching 90%, with strong inter-rater agreement. To evaluate downstream utility, we conduct RAG across seven medical question answering benchmarks using five leading LLMs, consistently observing significant improvements over non-augmented baselines. Case studies further demonstrate the KG's value in literature-based drug repurposing via confidence-aware causal inference.
MEDMKG: Benchmarking Medical Knowledge Exploitation with Multimodal Knowledge Graph
Medical deep learning models depend heavily on domain-specific knowledge to perform well on knowledge-intensive clinical tasks. Prior work has primarily leveraged unimodal knowledge graphs, such as the Unified Medical Language System (UMLS), to enhance model performance. However, integrating multimodal medical knowledge graphs remains largely underexplored, mainly due to the lack of resources linking imaging data with clinical concepts. To address this gap, we propose MEDMKG, a Medical Multimodal Knowledge Graph that unifies visual and textual medical information through a multi-stage construction pipeline. MEDMKG fuses the rich multimodal data from MIMIC-CXR with the structured clinical knowledge from UMLS, utilizing both rule-based tools and large language models for accurate concept extraction and relationship modeling. To ensure graph quality and compactness, we introduce Neighbor-aware Filtering (NaF), a novel filtering algorithm tailored for multimodal knowledge graphs. We evaluate MEDMKG across three tasks under two experimental settings, benchmarking twenty-four baseline methods and four state-of-the-art vision-language backbones on six datasets. Results show that MEDMKG not only improves performance in downstream medical tasks but also offers a strong foundation for developing adaptive and robust strategies for multimodal knowledge integration in medical artificial intelligence.
Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
In biomedical imaging analysis, the dichotomy between 2D and 3D data presents a significant challenge. While 3D volumes offer superior real-world applicability, they are less available for each modality and not easy to train in large scale, whereas 2D samples are abundant but less comprehensive. This paper introduces the Cross-D Conv operation, a novel approach that bridges the dimensional gap by learning the phase shifting in the Fourier domain. Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning. The proposed architecture leverages the abundance of 2D training data to enhance 3D model performance, offering a practical solution to the multimodal data scarcity challenge in 3D medical model pretraining. Experimental validation on the RadImagenet (2D) and multimodal (3D) sets demonstrates that our approach achieves comparable or superior performance in feature quality assessment comparable to conventional methods. The enhanced convolution operation presents new opportunities for developing efficient classification and segmentation models in medical imaging. This work represents an advancement in cross-dimensional and multi-modal medical image analysis, offering a robust framework for utilizing 2D priors in 3D model pretraining or vice versa while maintaining computational efficiency.
HuaTuo: Tuning LLaMA Model with Chinese Medical Knowledge
Large Language Models (LLMs), such as the LLaMA model, have demonstrated their effectiveness in various general-domain natural language processing (NLP) tasks. Nevertheless, LLMs have not yet performed optimally in biomedical domain tasks due to the need for medical expertise in the responses. In response to this challenge, we propose HuaTuo, a LLaMA-based model that has been supervised-fine-tuned with generated QA (Question-Answer) instances. The experimental results demonstrate that HuaTuo generates responses that possess more reliable medical knowledge. Our proposed HuaTuo model is accessible at https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese.
Prompt as Knowledge Bank: Boost Vision-language model via Structural Representation for zero-shot medical detection
Zero-shot medical detection can further improve detection performance without relying on annotated medical images even upon the fine-tuned model, showing great clinical value. Recent studies leverage grounded vision-language models (GLIP) to achieve this by using detailed disease descriptions as prompts for the target disease name during the inference phase. However, these methods typically treat prompts as equivalent context to the target name, making it difficult to assign specific disease knowledge based on visual information, leading to a coarse alignment between images and target descriptions. In this paper, we propose StructuralGLIP, which introduces an auxiliary branch to encode prompts into a latent knowledge bank layer-by-layer, enabling more context-aware and fine-grained alignment. Specifically, in each layer, we select highly similar features from both the image representation and the knowledge bank, forming structural representations that capture nuanced relationships between image patches and target descriptions. These features are then fused across modalities to further enhance detection performance. Extensive experiments demonstrate that StructuralGLIP achieves a +4.1\% AP improvement over prior state-of-the-art methods across seven zero-shot medical detection benchmarks, and consistently improves fine-tuned models by +3.2\% AP on endoscopy image datasets.
JingFang: A Traditional Chinese Medicine Large Language Model of Expert-Level Medical Diagnosis and Syndrome Differentiation-Based Treatment
Traditional Chinese medicine (TCM) plays a vital role in health protection and disease treatment, but its practical application requires extensive medical knowledge and clinical experience. Existing TCM Large Language Models (LLMs) exhibit critical limitations of uncomprehensive medical consultation and diagnoses, and inaccurate syndrome differentiation-based treatment. To address these issues, this study establishes JingFang (JF): a novel TCM Large Language Model that demonstrates the expert-level capability of medical diagnosis and syndrome differentiation-based treatment. We innovate a Multi-agent Dynamic Collaborative Chain-of-Thought Mechanism (MDCCTM) for medical consultation, enabling JF with effective and accurate diagnostic ability. In addition, a Syndrome Agent and a Dual-Stage Retrieval Scheme (DSRS) are developed to significantly enhance the capacity of JF for disease treatment based on syndrome differentiation. JingFang not only facilitates the application of LLMs but also promotes the effective practice of TCM in human health protection and disease treatment.
MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making
Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents) that helps address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes adapted to tasks of varying complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and medical diagnosis benchmarks, including a comparison of LLMs' medical complexity classification against human physicians. MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant improvement of up to 4.2% (p < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy improvement of 11.8%. Our code can be found at https://github.com/mitmedialab/MDAgents.
Improving Medical Dialogue Generation with Abstract Meaning Representations
Medical Dialogue Generation serves a critical role in telemedicine by facilitating the dissemination of medical expertise to patients. Existing studies focus on incorporating textual representations, which have limited their ability to represent the semantics of text, such as ignoring important medical entities. To enhance the model's understanding of the textual semantics and the medical knowledge including entities and relations, we introduce the use of Abstract Meaning Representations (AMR) to construct graphical representations that delineate the roles of language constituents and medical entities within the dialogues. In this paper, We propose a novel framework that models dialogues between patients and healthcare professionals using AMR graphs, where the neural networks incorporate textual and graphical knowledge with a dual attention mechanism. Experimental results show that our framework outperforms strong baseline models in medical dialogue generation, demonstrating the effectiveness of AMR graphs in enhancing the representations of medical knowledge and logical relationships. Furthermore, to support future research in this domain, we provide the corresponding source code at https://github.com/Bernard-Yang/MedDiaAMR.
Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models
The rapid advancement of large language models (LLMs) has significantly impacted various domains, including healthcare and biomedicine. However, the phenomenon of hallucination, where LLMs generate outputs that deviate from factual accuracy or context, poses a critical challenge, especially in high-stakes domains. This paper conducts a scoping study of existing techniques for mitigating hallucinations in knowledge-based task in general and especially for medical domains. Key methods covered in the paper include Retrieval-Augmented Generation (RAG)-based techniques, iterative feedback loops, supervised fine-tuning, and prompt engineering. These techniques, while promising in general contexts, require further adaptation and optimization for the medical domain due to its unique demands for up-to-date, specialized knowledge and strict adherence to medical guidelines. Addressing these challenges is crucial for developing trustworthy AI systems that enhance clinical decision-making and patient safety as well as accuracy of biomedical scientific research.
MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
Existing vision-text contrastive learning like CLIP aims to match the paired image and caption embeddings while pushing others apart, which improves representation transferability and supports zero-shot prediction. However, medical image-text datasets are orders of magnitude below the general images and captions from the internet. Moreover, previous methods encounter many false negatives, i.e., images and reports from separate patients probably carry the same semantics but are wrongly treated as negatives. In this paper, we decouple images and texts for multimodal contrastive learning thus scaling the usable training data in a combinatorial magnitude with low cost. We also propose to replace the InfoNCE loss with semantic matching loss based on medical knowledge to eliminate false negatives in contrastive learning. We prove that MedCLIP is a simple yet effective framework: it outperforms state-of-the-art methods on zero-shot prediction, supervised classification, and image-text retrieval. Surprisingly, we observe that with only 20K pre-training data, MedCLIP wins over the state-of-the-art method (using around 200K data). Our code is available at https://github.com/RyanWangZf/MedCLIP.
Med42 -- Evaluating Fine-Tuning Strategies for Medical LLMs: Full-Parameter vs. Parameter-Efficient Approaches
This study presents a comprehensive analysis and comparison of two predominant fine-tuning methodologies - full-parameter fine-tuning and parameter-efficient tuning - within the context of medical Large Language Models (LLMs). We developed and refined a series of LLMs, based on the Llama-2 architecture, specifically designed to enhance medical knowledge retrieval, reasoning, and question-answering capabilities. Our experiments systematically evaluate the effectiveness of these tuning strategies across various well-known medical benchmarks. Notably, our medical LLM Med42 showed an accuracy level of 72% on the US Medical Licensing Examination (USMLE) datasets, setting a new standard in performance for openly available medical LLMs. Through this comparative analysis, we aim to identify the most effective and efficient method for fine-tuning LLMs in the medical domain, thereby contributing significantly to the advancement of AI-driven healthcare applications.
MC-CoT: A Modular Collaborative CoT Framework for Zero-shot Medical-VQA with LLM and MLLM Integration
In recent advancements, multimodal large language models (MLLMs) have been fine-tuned on specific medical image datasets to address medical visual question answering (Med-VQA) tasks. However, this common approach of task-specific fine-tuning is costly and necessitates separate models for each downstream task, limiting the exploration of zero-shot capabilities. In this paper, we introduce MC-CoT, a modular cross-modal collaboration Chain-of-Thought (CoT) framework designed to enhance the zero-shot performance of MLLMs in Med-VQA by leveraging large language models (LLMs). MC-CoT improves reasoning and information extraction by integrating medical knowledge and task-specific guidance, where LLM provides various complex medical reasoning chains and MLLM provides various observations of medical images based on instructions of the LLM. Our experiments on datasets such as SLAKE, VQA-RAD, and PATH-VQA show that MC-CoT surpasses standalone MLLMs and various multimodality CoT frameworks in recall rate and accuracy. These findings highlight the importance of incorporating background information and detailed guidance in addressing complex zero-shot Med-VQA tasks.
ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using Large Language Models
Large language models (LLMs) have recently demonstrated their potential in clinical applications, providing valuable medical knowledge and advice. For example, a large dialog LLM like ChatGPT has successfully passed part of the US medical licensing exam. However, LLMs currently have difficulty processing images, making it challenging to interpret information from medical images, which are rich in information that supports clinical decisions. On the other hand, computer-aided diagnosis (CAD) networks for medical images have seen significant success in the medical field by using advanced deep-learning algorithms to support clinical decision-making. This paper presents a method for integrating LLMs into medical-image CAD networks. The proposed framework uses LLMs to enhance the output of multiple CAD networks, such as diagnosis networks, lesion segmentation networks, and report generation networks, by summarizing and reorganizing the information presented in natural language text format. The goal is to merge the strengths of LLMs' medical domain knowledge and logical reasoning with the vision understanding capability of existing medical-image CAD models to create a more user-friendly and understandable system for patients compared to conventional CAD systems. In the future, LLM's medical knowledge can be also used to improve the performance of vision-based medical-image CAD models.
InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Large Language Models (LLMs) have shown substantial advances through reinforcement learning (RL), particularly in domains where rewards can be programmatically verified, such as mathematics and code. In these areas, models benefit from a well-defined operational base guided by explicit rule-based objectives. However, this progress reveals a significant limitation: in open-ended domains where rewards are ambiguous, subjective, or context-dependent, such as creative writing, scientific reasoning, and notably medical consultation, robust reward functions are lacking, making these areas challenging for current RL strategies. To bridge this gap, we introduce ORBIT, an open-ended rubric-based incremental training framework specifically designed for high-stakes medical dialogue. ORBIT integrates syn- thetic dialogue generation with the dynamic creation of rubrics, employing these rubrics to direct an incremental RL process. In particular, this approach does not depend on external medical knowledge or manual rules, instead utilizing rubric-guided feedback to shape learning. When implemented on the Qwen3-4B-Instruct model, our method can greatly enhance its performance on the HealthBench-Hard benchmark from 7.0 to 27.2 using only 2k samples, thus achieving state-of-the-art results for models of this scale. Our analysis confirms that rubric-driven RL fos-ters consistent performance gains across diverse consultation scenarios, going beyond simple numerical improvements. These findings underscore rubric-based feedback as a scalable strategy for advancing LLMs in intricate, open-ended tasks.
MALADE: Orchestration of LLM-powered Agents with Retrieval Augmented Generation for Pharmacovigilance
In the era of Large Language Models (LLMs), given their remarkable text understanding and generation abilities, there is an unprecedented opportunity to develop new, LLM-based methods for trustworthy medical knowledge synthesis, extraction and summarization. This paper focuses on the problem of Pharmacovigilance (PhV), where the significance and challenges lie in identifying Adverse Drug Events (ADEs) from diverse text sources, such as medical literature, clinical notes, and drug labels. Unfortunately, this task is hindered by factors including variations in the terminologies of drugs and outcomes, and ADE descriptions often being buried in large amounts of narrative text. We present MALADE, the first effective collaborative multi-agent system powered by LLM with Retrieval Augmented Generation for ADE extraction from drug label data. This technique involves augmenting a query to an LLM with relevant information extracted from text resources, and instructing the LLM to compose a response consistent with the augmented data. MALADE is a general LLM-agnostic architecture, and its unique capabilities are: (1) leveraging a variety of external sources, such as medical literature, drug labels, and FDA tools (e.g., OpenFDA drug information API), (2) extracting drug-outcome association in a structured format along with the strength of the association, and (3) providing explanations for established associations. Instantiated with GPT-4 Turbo or GPT-4o, and FDA drug label data, MALADE demonstrates its efficacy with an Area Under ROC Curve of 0.90 against the OMOP Ground Truth table of ADEs. Our implementation leverages the Langroid multi-agent LLM framework and can be found at https://github.com/jihyechoi77/malade.
Cross-Domain Data Integration for Named Entity Disambiguation in Biomedical Text
Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities. Existing approaches are limited by the presence of coarse-grained structural resources in biomedical knowledge bases as well as the use of training datasets that provide low coverage over uncommon resources. In this work, we address these issues by proposing a cross-domain data integration method that transfers structural knowledge from a general text knowledge base to the medical domain. We utilize our integration scheme to augment structural resources and generate a large biomedical NED dataset for pretraining. Our pretrained model with injected structural knowledge achieves state-of-the-art performance on two benchmark medical NED datasets: MedMentions and BC5CDR. Furthermore, we improve disambiguation of rare entities by up to 57 accuracy points.
SA-MDKIF: A Scalable and Adaptable Medical Domain Knowledge Injection Framework for Large Language Models
Recent advances in large language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks. However, their effective application in the medical domain is hampered by a lack of medical domain knowledge. In this study, we present SA-MDKIF, a scalable and adaptable framework that aims to inject medical knowledge into general-purpose LLMs through instruction tuning, thereby enabling adaptability for various downstream tasks. SA-MDKIF consists of two stages: skill training and skill adaptation. In the first stage, we define 12 basic medical skills and use AdaLoRA to train these skills based on uniformly formatted instructional datasets that we have constructed. In the next stage, we train the skill router using task-specific downstream data and use this router to integrate the acquired skills with LLMs during inference. Experimental results on 9 different medical tasks show that SA-MDKIF improves performance by 10-20% compared to the original LLMs. Notably, this improvement is particularly pronounced for unseen medical tasks, showing an improvement of up to 30%.
HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention
This paper proposes a chatbot framework that adopts a hybrid model which consists of a knowledge graph and a text similarity model. Based on this chatbot framework, we build HHH, an online question-and-answer (QA) Healthcare Helper system for answering complex medical questions. HHH maintains a knowledge graph constructed from medical data collected from the Internet. HHH also implements a novel text representation and similarity deep learning model, Hierarchical BiLSTM Attention Model (HBAM), to find the most similar question from a large QA dataset. We compare HBAM with other state-of-the-art language models such as bidirectional encoder representation from transformers (BERT) and Manhattan LSTM Model (MaLSTM). We train and test the models with a subset of the Quora duplicate questions dataset in the medical area. The experimental results show that our model is able to achieve a superior performance than these existing methods.
Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding
Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with average length of 3,000+ tokens. This task is challenging due to a high-dimensional space of multi-label assignment (tens of thousands of ICD codes) and the long-tail challenge: only a few codes (common diseases) are frequently assigned while most codes (rare diseases) are infrequently assigned. This study addresses the long-tail challenge by adapting a prompt-based fine-tuning technique with label semantics, which has been shown to be effective under few-shot setting. To further enhance the performance in medical domain, we propose a knowledge-enhanced longformer by injecting three domain-specific knowledge: hierarchy, synonym, and abbreviation with additional pretraining using contrastive learning. Experiments on MIMIC-III-full, a benchmark dataset of code assignment, show that our proposed method outperforms previous state-of-the-art method in 14.5% in marco F1 (from 10.3 to 11.8, P<0.001). To further test our model on few-shot setting, we created a new rare diseases coding dataset, MIMIC-III-rare50, on which our model improves marco F1 from 17.1 to 30.4 and micro F1 from 17.2 to 32.6 compared to previous method.
ReasonMed: A 370K Multi-Agent Generated Dataset for Advancing Medical Reasoning
Though reasoning-based large language models (LLMs) have excelled in mathematics and programming, their capabilities in knowledge-intensive medical question answering remain underexplored. To address this, we introduce ReasonMed, the largest medical reasoning dataset, comprising 370k high-quality examples distilled from 1.7 million initial reasoning paths generated by various LLMs. ReasonMed is constructed through a multi-agent verification and refinement process, where we design an Error Refiner to enhance the reasoning paths by identifying and correcting error-prone steps flagged by a verifier. Leveraging ReasonMed, we systematically investigate best practices for training medical reasoning models and find that combining detailed Chain-of-Thought (CoT) reasoning with concise answer summaries yields the most effective fine-tuning strategy. Based on this strategy, we train ReasonMed-7B, which sets a new benchmark for sub-10B models, outperforming the prior best by 4.17\% and even exceeding LLaMA3.1-70B on PubMedQA by 4.60\%.
Reinventing Clinical Dialogue: Agentic Paradigms for LLM Enabled Healthcare Communication
Clinical dialogue represents a complex duality requiring both the empathetic fluency of natural conversation and the rigorous precision of evidence-based medicine. While Large Language Models possess unprecedented linguistic capabilities, their architectural reliance on reactive and stateless processing often favors probabilistic plausibility over factual veracity. This structural limitation has catalyzed a paradigm shift in medical AI from generative text prediction to agentic autonomy, where the model functions as a central reasoning engine capable of deliberate planning and persistent memory. Moving beyond existing reviews that primarily catalog downstream applications, this survey provides a first-principles analysis of the cognitive architecture underpinning this shift. We introduce a novel taxonomy structured along the orthogonal axes of knowledge source and agency objective to delineate the provenance of clinical knowledge against the system's operational scope. This framework facilitates a systematic analysis of the intrinsic trade-offs between creativity and reliability by categorizing methods into four archetypes: Latent Space Clinicians, Emergent Planners, Grounded Synthesizers, and Verifiable Workflow Automators. For each paradigm, we deconstruct the technical realization across the entire cognitive pipeline, encompassing strategic planning, memory management, action execution, collaboration, and evolution to reveal how distinct architectural choices balance the tension between autonomy and safety.
Enhancing Health Information Retrieval with RAG by Prioritizing Topical Relevance and Factual Accuracy
The exponential surge in online health information, coupled with its increasing use by non-experts, highlights the pressing need for advanced Health Information Retrieval models that consider not only topical relevance but also the factual accuracy of the retrieved information, given the potential risks associated with health misinformation. To this aim, this paper introduces a solution driven by Retrieval-Augmented Generation (RAG), which leverages the capabilities of generative Large Language Models (LLMs) to enhance the retrieval of health-related documents grounded in scientific evidence. In particular, we propose a three-stage model: in the first stage, the user's query is employed to retrieve topically relevant passages with associated references from a knowledge base constituted by scientific literature. In the second stage, these passages, alongside the initial query, are processed by LLMs to generate a contextually relevant rich text (GenText). In the last stage, the documents to be retrieved are evaluated and ranked both from the point of view of topical relevance and factual accuracy by means of their comparison with GenText, either through stance detection or semantic similarity. In addition to calculating factual accuracy, GenText can offer a layer of explainability for it, aiding users in understanding the reasoning behind the retrieval. Experimental evaluation of our model on benchmark datasets and against baseline models demonstrates its effectiveness in enhancing the retrieval of both topically relevant and factually accurate health information, thus presenting a significant step forward in the health misinformation mitigation problem.
Structural Positional Encoding for knowledge integration in transformer-based medical process monitoring
Predictive process monitoring is a process mining task aimed at forecasting information about a running process trace, such as the most correct next activity to be executed. In medical domains, predictive process monitoring can provide valuable decision support in atypical and nontrivial situations. Decision support and quality assessment in medicine cannot ignore domain knowledge, in order to be grounded on all the available information (which is not limited to data) and to be really acceptable by end users. In this paper, we propose a predictive process monitoring approach relying on the use of a {\em transformer}, a deep learning architecture based on the attention mechanism. A major contribution of our work lies in the incorporation of ontological domain-specific knowledge, carried out through a graph positional encoding technique. The paper presents and discusses the encouraging experimental result we are collecting in the domain of stroke management.
Efficient Knowledge Distillation of SAM for Medical Image Segmentation
The Segment Anything Model (SAM) has set a new standard in interactive image segmentation, offering robust performance across various tasks. However, its significant computational requirements limit its deployment in real-time or resource-constrained environments. To address these challenges, we propose a novel knowledge distillation approach, KD SAM, which incorporates both encoder and decoder optimization through a combination of Mean Squared Error (MSE) and Perceptual Loss. This dual-loss framework captures structural and semantic features, enabling the student model to maintain high segmentation accuracy while reducing computational complexity. Based on the model evaluation on datasets, including Kvasir-SEG, ISIC 2017, Fetal Head Ultrasound, and Breast Ultrasound, we demonstrate that KD SAM achieves comparable or superior performance to the baseline models, with significantly fewer parameters. KD SAM effectively balances segmentation accuracy and computational efficiency, making it well-suited for real-time medical image segmentation applications in resource-constrained environments.
Few Exemplar-Based General Medical Image Segmentation via Domain-Aware Selective Adaptation
Medical image segmentation poses challenges due to domain gaps, data modality variations, and dependency on domain knowledge or experts, especially for low- and middle-income countries (LMICs). Whereas for humans, given a few exemplars (with corresponding labels), we are able to segment different medical images even without exten-sive domain-specific clinical training. In addition, current SAM-based medical segmentation models use fine-grained visual prompts, such as the bounding rectangle generated from manually annotated target segmentation mask, as the bounding box (bbox) prompt during the testing phase. However, in actual clinical scenarios, no such precise prior knowledge is available. Our experimental results also reveal that previous models nearly fail to predict when given coarser bbox prompts. Considering these issues, in this paper, we introduce a domain-aware selective adaptation approach to adapt the general knowledge learned from a large model trained with natural images to the corresponding medical domains/modalities, with access to only a few (e.g. less than 5) exemplars. Our method mitigates the aforementioned limitations, providing an efficient and LMICs-friendly solution. Extensive experimental analysis showcases the effectiveness of our approach, offering potential advancements in healthcare diagnostics and clinical applications in LMICs.
MedCare: Advancing Medical LLMs through Decoupling Clinical Alignment and Knowledge Aggregation
Large language models (LLMs) have shown substantial progress in natural language understanding and generation, proving valuable especially in the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks, which can be categorized as knowledge-intensive tasks and alignment-required tasks. Previous approaches either ignore the latter task or focus on a minority of tasks and hence lose generalization. To address these drawbacks, we propose a progressive fine-tuning pipeline. This pipeline employs a Knowledge Aggregator and a Noise aggregator to encode diverse knowledge in the first stage and filter out detrimental information. In the second stage, we drop the Noise Aggregator to avoid the interference of suboptimal representation and leverage an additional alignment module optimized towards an orthogonal direction to the knowledge space to mitigate knowledge forgetting. Based on this two-stage paradigm, we proposed a Medical LLM through decoupling Clinical Alignment and Knowledge Aggregation (MedCare), which is designed to achieve state-of-the-art (SOTA) performance on over 20 medical tasks, as well as SOTA results on specific medical alignment tasks. Various model sizes of MedCare (1.8B, 7B, 14B) all demonstrate significant improvements over existing models with similar model sizes.
MedReseacher-R1: Expert-Level Medical Deep Researcher via A Knowledge-Informed Trajectory Synthesis Framework
Recent developments in Large Language Model (LLM)-based agents have shown impressive capabilities spanning multiple domains, exemplified by deep research systems that demonstrate superior performance on complex information-seeking and synthesis tasks. While general-purpose deep research agents have shown impressive capabilities, they struggle significantly with medical domain challenges, as evidenced by leading proprietary systems achieving limited accuracy on complex medical benchmarks. The key limitations are: (1) the model lacks sufficient dense medical knowledge for clinical reasoning, and (2) the framework is constrained by the absence of specialized retrieval tools tailored for medical contexts.We present a medical deep research agent that addresses these challenges through two core innovations. First, we develop a novel data synthesis framework using medical knowledge graphs, extracting the longest chains from subgraphs around rare medical entities to generate complex multi-hop question-answer pairs. Second, we integrate a custom-built private medical retrieval engine alongside general-purpose tools, enabling accurate medical information synthesis. Our approach generates 2100+ diverse trajectories across 12 medical specialties, each averaging 4.2 tool interactions.Through a two-stage training paradigm combining supervised fine-tuning and online reinforcement learning with composite rewards, our MedResearcher-R1-32B model demonstrates exceptional performance, establishing new state-of-the-art results on medical benchmarks while maintaining competitive performance on general deep research tasks. Our work demonstrates that strategic domain-specific innovations in architecture, tool design, and training data construction can enable smaller open-source models to outperform much larger proprietary systems in specialized domains.
MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs
Medical tasks such as diagnosis and treatment planning require precise and complex reasoning, particularly in life-critical domains. Unlike mathematical reasoning, medical reasoning demands meticulous, verifiable thought processes to ensure reliability and accuracy. However, there is a notable lack of datasets that provide transparent, step-by-step reasoning to validate and enhance the medical reasoning ability of AI models. To bridge this gap, we introduce MedReason, a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or ``thinking paths'', which trace connections from question elements to answers via relevant KG entities. Each path is validated for consistency with clinical logic and evidence-based medicine. Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of 32,682 question-answer pairs, each with detailed, step-by-step explanations. Experiments demonstrate that fine-tuning with our dataset consistently boosts medical problem-solving capabilities, achieving significant gains of up to 7.7% for DeepSeek-Ditill-8B. Our top-performing model, MedReason-8B, outperforms the Huatuo-o1-8B, a state-of-the-art medical reasoning model, by up to 4.2% on the clinical benchmark MedBullets. We also engage medical professionals from diverse specialties to assess our dataset's quality, ensuring MedReason offers accurate and coherent medical reasoning. Our data, models, and code will be publicly available.
Towards Efficient Methods in Medical Question Answering using Knowledge Graph Embeddings
In Natural Language Processing (NLP), Machine Reading Comprehension (MRC) is the task of answering a question based on a given context. To handle questions in the medical domain, modern language models such as BioBERT, SciBERT and even ChatGPT are trained on vast amounts of in-domain medical corpora. However, in-domain pre-training is expensive in terms of time and resources. In this paper, we propose a resource-efficient approach for injecting domain knowledge into a model without relying on such domain-specific pre-training. Knowledge graphs are powerful resources for accessing medical information. Building on existing work, we introduce a method using Multi-Layer Perceptrons (MLPs) for aligning and integrating embeddings extracted from medical knowledge graphs with the embedding spaces of pre-trained language models (LMs). The aligned embeddings are fused with open-domain LMs BERT and RoBERTa that are fine-tuned for two MRC tasks, span detection (COVID-QA) and multiple-choice questions (PubMedQA). We compare our method to prior techniques that rely on a vocabulary overlap for embedding alignment and show how our method circumvents this requirement to deliver better performance. On both datasets, our method allows BERT/RoBERTa to either perform on par (occasionally exceeding) with stronger domain-specific models or show improvements in general over prior techniques. With the proposed approach, we signal an alternative method to in-domain pre-training to achieve domain proficiency.
Med-RLVR: Emerging Medical Reasoning from a 3B base model via reinforcement Learning
Reinforcement learning from verifiable rewards (RLVR) has recently gained attention for its ability to elicit self-evolved reasoning capabilitie from base language models without explicit reasoning supervisions, as demonstrated by DeepSeek-R1. While prior work on RLVR has primarily focused on mathematical and coding domains, its applicability to other tasks and domains remains unexplored. In this work, we investigate whether medical reasoning can emerge from RLVR. We introduce Med-RLVR as an initial study of RLVR in the medical domain leveraging medical multiple-choice question answering (MCQA) data as verifiable labels. Our results demonstrate that RLVR is not only effective for math and coding but also extends successfully to medical question answering. Notably, Med-RLVR achieves performance comparable to traditional supervised fine-tuning (SFT) on in-distribution tasks while significantly improving out-of-distribution generalization, with an 8-point accuracy gain. Further analysis of training dynamics reveals that, with no explicit reasoning supervision, reasoning emerges from the 3B-parameter base model. These findings underscore the potential of RLVR in domains beyond math and coding, opening new avenues for its application in knowledge-intensive fields such as medicine.
AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data
Large Language Models~(LLMs) have demonstrated capabilities across various applications but face challenges such as hallucination, limited reasoning abilities, and factual inconsistencies, especially when tackling complex, domain-specific tasks like question answering~(QA). While Knowledge Graphs~(KGs) have been shown to help mitigate these issues, research on the integration of LLMs with background KGs remains limited. In particular, user accessibility and the flexibility of the underlying KG have not been thoroughly explored. We introduce AGENTiGraph (Adaptive Generative ENgine for Task-based Interaction and Graphical Representation), a platform for knowledge management through natural language interaction. It integrates knowledge extraction, integration, and real-time visualization. AGENTiGraph employs a multi-agent architecture to dynamically interpret user intents, manage tasks, and integrate new knowledge, ensuring adaptability to evolving user requirements and data contexts. Our approach demonstrates superior performance in knowledge graph interactions, particularly for complex domain-specific tasks. Experimental results on a dataset of 3,500 test cases show AGENTiGraph significantly outperforms state-of-the-art zero-shot baselines, achieving 95.12\% accuracy in task classification and 90.45\% success rate in task execution. User studies corroborate its effectiveness in real-world scenarios. To showcase versatility, we extended AGENTiGraph to legislation and healthcare domains, constructing specialized KGs capable of answering complex queries in legal and medical contexts.
EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text
Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19.
HealthFC: A Dataset of Health Claims for Evidence-Based Medical Fact-Checking
Seeking health-related advice on the internet has become a common practice in the digital era. Determining the trustworthiness of medical claims found online and finding appropriate evidence for this information is increasingly challenging. Fact-checking has emerged as an approach to assess the veracity of factual claims using evidence from credible knowledge sources. To help advance the automation of this task, in this paper, we introduce a novel dataset of 750 health-related claims, labeled for veracity by medical experts and backed with evidence from appropriate clinical studies. We provide an analysis of the dataset, highlighting its characteristics and challenges. The dataset can be used for Machine Learning tasks related to automated fact-checking such as evidence retrieval, veracity prediction, and explanation generation. For this purpose, we provide baseline models based on different approaches, examine their performance, and discuss the findings.
A New Data Representation Based on Training Data Characteristics to Extract Drug Named-Entity in Medical Text
One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text is special and has unique characteristics. In addition, the medical text mining poses more challenges, e.g., more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug. The mining is even more challenging due to the lack of labeled dataset sources and external knowledge, as well as multiple token representations for a single drug name that is more common in the real application setting. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, i.e., MLP (Multi-Layer Perceptrons). The second technique involves two deep network classifiers, i.e., DBN (Deep Belief Networks), and SAE (Stacked Denoising Encoders). The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, i.e., LSTM (Long Short Term Memory). In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645.
MeSH Term Suggestion for Systematic Review Literature Search
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in developing the search queries. Queries in this context are highly complex, based on Boolean logic, include free-text terms and index terms from standardised terminologies (e.g., MeSH), and are difficult and time-consuming to build. The use of MeSH terms, in particular, has been shown to improve the quality of the search results. However, identifying the correct MeSH terms to include in a query is difficult: information experts are often unfamiliar with the MeSH database and unsure about the appropriateness of MeSH terms for a query. Naturally, the full value of the MeSH terminology is often not fully exploited. This paper investigates methods to suggest MeSH terms based on an initial Boolean query that includes only free-text terms. These methods promise to automatically identify highly effective MeSH terms for inclusion in a systematic review query. Our study contributes an empirical evaluation of several MeSH term suggestion methods. We perform an extensive analysis of the retrieval, ranking, and refinement of MeSH term suggestions for each method and how these suggestions impact the effectiveness of Boolean queries.
JMedLoRA:Medical Domain Adaptation on Japanese Large Language Models using Instruction-tuning
In the ongoing wave of impact driven by large language models (LLMs) like ChatGPT, the adaptation of LLMs to medical domain has emerged as a crucial research frontier. Since mainstream LLMs tend to be designed for general-purpose applications, constructing a medical LLM through domain adaptation is a huge challenge. While instruction-tuning is used to fine-tune some LLMs, its precise roles in domain adaptation remain unknown. Here we show the contribution of LoRA-based instruction-tuning to performance in Japanese medical question-answering tasks. In doing so, we employ a multifaceted evaluation for multiple-choice questions, including scoring based on "Exact match" and "Gestalt distance" in addition to the conventional accuracy. Our findings suggest that LoRA-based instruction-tuning can partially incorporate domain-specific knowledge into LLMs, with larger models demonstrating more pronounced effects. Furthermore, our results underscore the potential of adapting English-centric models for Japanese applications in domain adaptation, while also highlighting the persisting limitations of Japanese-centric models. This initiative represents a pioneering effort in enabling medical institutions to fine-tune and operate models without relying on external services.
Generalization of Medical Large Language Models through Cross-Domain Weak Supervision
The advancement of large language models (LLMs) has opened new frontiers in natural language processing, particularly in specialized domains like healthcare. In this paper, we propose the Incremental Curriculum-Based Fine-Tuning (ICFT) framework to enhance the generative capabilities of medical large language models (MLLMs). ICFT combines curriculum-based learning, dual-stage memory coordination, and parameter-efficient fine-tuning to enable a progressive transition from general linguistic knowledge to strong domain-specific expertise. Experimental results across diverse medical NLP tasks, including question answering, preference classification, and response generation, demonstrate that ICFT consistently outperforms state-of-the-art baselines, achieving improvements in both accuracy and efficiency. Further analysis reveals the framework's ability to generalize to unseen data, reduce errors, and deliver diverse, contextually relevant medical responses. These findings establish ICFT as a robust and scalable solution for adapting LLMs to the medical domain, offering practical benefits for real-world healthcare applications.
RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models
The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model's generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RULE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy. We publicly release our benchmark and code in https://github.com/richard-peng-xia/RULE.
Depthwise-Dilated Convolutional Adapters for Medical Object Tracking and Segmentation Using the Segment Anything Model 2
Recent advances in medical image segmentation have been driven by deep learning; however, most existing methods remain limited by modality-specific designs and exhibit poor adaptability to dynamic medical imaging scenarios. The Segment Anything Model 2 (SAM2) and its related variants, which introduce a streaming memory mechanism for real-time video segmentation, present new opportunities for prompt-based, generalizable solutions. Nevertheless, adapting these models to medical video scenarios typically requires large-scale datasets for retraining or transfer learning, leading to high computational costs and the risk of catastrophic forgetting. To address these challenges, we propose DD-SAM2, an efficient adaptation framework for SAM2 that incorporates a Depthwise-Dilated Adapter (DD-Adapter) to enhance multi-scale feature extraction with minimal parameter overhead. This design enables effective fine-tuning of SAM2 on medical videos with limited training data. Unlike existing adapter-based methods focused solely on static images, DD-SAM2 fully exploits SAM2's streaming memory for medical video object tracking and segmentation. Comprehensive evaluations on TrackRad2025 (tumor segmentation) and EchoNet-Dynamic (left ventricle tracking) datasets demonstrate superior performance, achieving Dice scores of 0.93 and 0.97, respectively. To the best of our knowledge, this work provides an initial attempt at systematically exploring adapter-based SAM2 fine-tuning for medical video segmentation and tracking. Code, datasets, and models will be publicly available at https://github.com/apple1986/DD-SAM2.
VM-UNet: Vision Mamba UNet for Medical Image Segmentation
In the realm of medical image segmentation, both CNN-based and Transformer-based models have been extensively explored. However, CNNs exhibit limitations in long-range modeling capabilities, whereas Transformers are hampered by their quadratic computational complexity. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as a promising approach. They not only excel in modeling long-range interactions but also maintain a linear computational complexity. In this paper, leveraging state space models, we propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet). Specifically, the Visual State Space (VSS) block is introduced as the foundation block to capture extensive contextual information, and an asymmetrical encoder-decoder structure is constructed with fewer convolution layers to save calculation cost. We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks. To our best knowledge, this is the first medical image segmentation model constructed based on the pure SSM-based model. We aim to establish a baseline and provide valuable insights for the future development of more efficient and effective SSM-based segmentation systems. Our code is available at https://github.com/JCruan519/VM-UNet.
MedCalc-Bench: Evaluating Large Language Models for Medical Calculations
As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.
Proactive Reasoning-with-Retrieval Framework for Medical Multimodal Large Language Models
Incentivizing the reasoning ability of Multimodal Large Language Models (MLLMs) is essential for medical applications to transparently analyze medical scans and provide reliable diagnosis. However, existing medical MLLMs rely solely on internal knowledge during reasoning, leading to hallucinated reasoning and factual inaccuracies when encountering cases beyond their training scope. Although recent Agentic Retrieval-Augmented Generation (RAG) methods elicit the medical model's proactive retrieval ability during reasoning, they are confined to unimodal LLMs, neglecting the crucial visual information during reasoning and retrieval. Consequently, we propose the first Multimodal Medical Reasoning-with-Retrieval framework, Med-RwR, which actively retrieves external knowledge by querying observed symptoms or domain-specific medical concepts during reasoning. Specifically, we design a two-stage reinforcement learning strategy with tailored rewards that stimulate the model to leverage both visual diagnostic findings and textual clinical information for effective retrieval. Building on this foundation, we further propose a Confidence-Driven Image Re-retrieval (CDIR) method for test-time scaling when low prediction confidence is detected. Evaluation on various public medical benchmarks demonstrates Med-RwR's significant improvements over baseline models, proving the effectiveness of enhancing reasoning capabilities with external knowledge integration. Furthermore, Med-RwR demonstrates remarkable generalizability to unfamiliar domains, evidenced by 8.8% performance gain on our proposed EchoCardiography Benchmark (ECBench), despite the scarcity of echocardiography data in the training corpus. Our data, model, and codes will be made publicly available at https://github.com/xmed-lab/Med-RwR.
Med-R$^3$: Enhancing Medical Retrieval-Augmented Reasoning of LLMs via Progressive Reinforcement Learning
In medical scenarios, effectively retrieving external knowledge and leveraging it for rigorous logical reasoning is of significant importance. Despite their potential, existing work has predominantly focused on enhancing either retrieval or reasoning capabilities of the models in isolation, with little attention given to their joint optimization, which leads to limited coordination between the two processes. Additionally, current methods rely heavily on supervised fine-tuning (SFT), which can cause models to memorize existing problem-solving pathways, thereby restricting their generalization ability when confronted with novel problem contexts. Furthermore, while some studies have explored to improve retrieval-augmented reasoning in general domains via reinforcement learning, their reward function designs do not adequately capture the specific demands of the medical domain. To address these challenges, we introduce **Med-R^3**, a **Med**ical **R**etrieval-augmented **R**easoning framework driven by progressive **R**einforcement learning. In this framework, we first develop the model's ability to perform logical reasoning over medical problems. Subsequently, on the basis of this foundation, we adaptively optimize the retrieval capability to better align with the characteristics of knowledge corpus and external information utilization throughout the reasoning process. Finally, we conduct joint optimization of the model's retrieval and reasoning coordination. Extensive experiments indicate that **Med-R^3** could achieve state-of-the-art performances, with LLaMA3.1-8B-Instruct + Med-R^3 surpassing closed-sourced GPT-4o-mini by 3.93\% at a comparable parameter scale, while Qwen2.5-14B augmented with Med-R^3 shows a more substantial gain of 13.53\%.
MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering
Large Language Models (LLMs) have the potential of facilitating the development of Artificial Intelligence technology to assist medical experts for interactive decision support, which has been demonstrated by their competitive performances in Medical QA. However, while impressive, the required quality bar for medical applications remains far from being achieved. Currently, LLMs remain challenged by outdated knowledge and by their tendency to generate hallucinated content. Furthermore, most benchmarks to assess medical knowledge lack reference gold explanations which means that it is not possible to evaluate the reasoning of LLMs predictions. Finally, the situation is particularly grim if we consider benchmarking LLMs for languages other than English which remains, as far as we know, a totally neglected topic. In order to address these shortcomings, in this paper we present MedExpQA, the first multilingual benchmark based on medical exams to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for the first time reference gold explanations written by medical doctors which can be leveraged to establish various gold-based upper-bounds for comparison with LLMs performance. Comprehensive multilingual experimentation using both the gold reference explanations and Retrieval Augmented Generation (RAG) approaches show that performance of LLMs still has large room for improvement, especially for languages other than English. Furthermore, and despite using state-of-the-art RAG methods, our results also demonstrate the difficulty of obtaining and integrating readily available medical knowledge that may positively impact results on downstream evaluations for Medical Question Answering. So far the benchmark is available in four languages, but we hope that this work may encourage further development to other languages.
Reinforcement Learning Improves Traversal of Hierarchical Knowledge in LLMs
Reinforcement learning (RL) is often credited with improving language model reasoning and generalization at the expense of degrading memorized knowledge. We challenge this narrative by observing that RL-enhanced models consistently outperform their base and supervised fine-tuned (SFT) counterparts on pure knowledge recall tasks, particularly those requiring traversal of hierarchical, structured knowledge (e.g., medical codes). We hypothesize these gains stem not from newly acquired data, but from improved procedural skills in navigating and searching existing knowledge hierarchies within the model parameters. To support this hypothesis, we show that structured prompting, which explicitly guides SFTed models through hierarchical traversal, recovers most of the performance gap (reducing 24pp to 7pp on MedConceptsQA for DeepSeek-V3/R1). We further find that while prompting improves final-answer accuracy, RL-enhanced models retain superior ability to recall correct procedural paths on deep-retrieval tasks. Finally our layer-wise internal activation analysis reveals that while factual representations (e.g., activations for the statement "code 57.95 refers to urinary infection") maintain high cosine similarity between SFT and RL models, query representations (e.g., "what is code 57.95") diverge noticeably, indicating that RL primarily transforms how models traverse knowledge rather than the knowledge representation itself.
Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding
In this work, we address the problem of grounding abnormalities in medical images, where the goal is to localize clinical findings based on textual descriptions. While generalist Vision-Language Models (VLMs) excel in natural grounding tasks, they often struggle in the medical domain due to rare, compositional, and domain-specific terms that are poorly aligned with visual patterns. Specialized medical VLMs address this challenge via large-scale domain pretraining, but at the cost of substantial annotation and computational resources. To overcome these limitations, we propose Knowledge to Sight (K2Sight), a framework that introduces structured semantic supervision by decomposing clinical concepts into interpretable visual attributes, such as shape, density, and anatomical location. These attributes are distilled from domain ontologies and encoded into concise instruction-style prompts, which guide region-text alignment during training. Unlike conventional report-level supervision, our approach explicitly bridges domain knowledge and spatial structure, enabling data-efficient training of compact models. We train compact models with 0.23B and 2B parameters using only 1.5\% of the data required by state-of-the-art medical VLMs. Despite their small size and limited training data, these models achieve performance on par with or better than 7B+ medical VLMs, with up to 9.82\% improvement in mAP_{50}. Code and models: https://lijunrio.github.io/K2Sight/{SOTAPink{https://lijunrio.github.io/K2Sight/}}.
Bottom-up Domain-specific Superintelligence: A Reliable Knowledge Graph is What We Need
Language models traditionally used for cross-domain generalization have recently demonstrated task-specific reasoning. However, their top-down training approach on general corpora is insufficient for acquiring abstractions needed for deep domain expertise. This may require a bottom-up approach that acquires expertise by learning to compose simple domain concepts into more complex ones. A knowledge graph (KG) provides this compositional structure, where domain primitives are represented as head-relation-tail edges and their paths encode higher-level concepts. We present a task generation pipeline that synthesizes tasks directly from KG primitives, enabling models to acquire and compose them for reasoning. We fine-tune language models on the resultant KG-grounded curriculum to demonstrate domain-specific superintelligence. While broadly applicable, we validate our approach in medicine, where reliable KGs exist. Using a medical KG, we curate 24,000 reasoning tasks paired with thinking traces derived from diverse medical primitives. We fine-tune the QwQ-32B model on this curriculum to obtain QwQ-Med-3 that takes a step towards medical superintelligence. We also introduce ICD-Bench, an evaluation suite to quantify reasoning abilities across 15 medical domains. Our experiments demonstrate that QwQ-Med-3 significantly outperforms state-of-the-art reasoning models on ICD-Bench categories. Further analysis reveals that QwQ-Med-3 utilizes acquired primitives to widen the performance gap on the hardest tasks of ICD-Bench. Finally, evaluation on medical question-answer benchmarks shows that QwQ-Med-3 transfers acquired expertise to enhance the base model's performance. While the industry's approach to artificial general intelligence (AGI) emphasizes broad expertise, we envision a future in which AGI emerges from the composable interaction of efficient domain-specific superintelligent agents.
Spoken Dialogue System for Medical Prescription Acquisition on Smartphone: Development, Corpus and Evaluation
Hospital information systems (HIS) have become an essential part of healthcare institutions and now incorporate prescribing support software. Prescription support software allows for structured information capture, which improves the safety, appropriateness and efficiency of prescriptions and reduces the number of adverse drug events (ADEs). However, such a system increases the amount of time physicians spend at a computer entering information instead of providing medical care. In addition, any new visiting clinician must learn to manage complex interfaces since each HIS has its own interfaces. In this paper, we present a natural language interface for e-prescribing software in the form of a spoken dialogue system accessible on a smartphone. This system allows prescribers to record their prescriptions verbally, a form of interaction closer to their usual practice. The system extracts the formal representation of the prescription ready to be checked by the prescribing software and uses the dialogue to request mandatory information, correct errors or warn of particular situations. Since, to the best of our knowledge, there is no existing voice-based prescription dialogue system, we present the system developed in a low-resource environment, focusing on dialogue modeling, semantic extraction and data augmentation. The system was evaluated in the wild with 55 participants. This evaluation showed that our system has an average prescription time of 66.15 seconds for physicians and 35.64 seconds for other experts, and a task success rate of 76\% for physicians and 72\% for other experts. All evaluation data were recorded and annotated to form PxCorpus, the first spoken drug prescription corpus that has been made fully available to the community (https://doi.org/10.5281/zenodo.6524162).
MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.
Infusing clinical knowledge into tokenisers for language models
This study introduces a novel knowledge enhanced tokenisation mechanism, K-Tokeniser, for clinical text processing. Technically, at initialisation stage, K-Tokeniser populates global representations of tokens based on semantic types of domain concepts (such as drugs or diseases) from either a domain ontology like Unified Medical Language System or the training data of the task related corpus. At training or inference stage, sentence level localised context will be utilised for choosing the optimal global token representation to realise the semantic-based tokenisation. To avoid pretraining using the new tokeniser, an embedding initialisation approach is proposed to generate representations for new tokens. Using three transformer-based language models, a comprehensive set of experiments are conducted on four real-world datasets for evaluating K-Tokeniser in a wide range of clinical text analytics tasks including clinical concept and relation extraction, automated clinical coding, clinical phenotype identification, and clinical research article classification. Overall, our models demonstrate consistent improvements over their counterparts in all tasks. In particular, substantial improvements are observed in the automated clinical coding task with 13\% increase on Micro F_1 score. Furthermore, K-Tokeniser also shows significant capacities in facilitating quicker converge of language models. Specifically, using K-Tokeniser, the language models would only require 50\% of the training data to achieve the best performance of the baseline tokeniser using all training data in the concept extraction task and less than 20\% of the data for the automated coding task. It is worth mentioning that all these improvements require no pre-training process, making the approach generalisable.
Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data
Large Language Models (LLMs) like ChatGPT demonstrate significant potential in the medical field, often evaluated using multiple-choice questions (MCQs) similar to those found on the USMLE. Despite their prevalence in medical education, MCQs have limitations that might be exacerbated when assessing LLMs. To evaluate the effectiveness of MCQs in assessing the performance of LLMs, we developed a fictional medical benchmark focused on a non-existent gland, the Glianorex. This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities. We used GPT-4 to generate a comprehensive textbook on the Glianorex in both English and French and developed corresponding multiple-choice questions in both languages. We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting. The models achieved average scores around 67%, with minor performance differences between larger and smaller models. Performance was slightly higher in English than in French. Fine-tuned medical models showed some improvement over their base versions in English but not in French. The uniformly high performance across models suggests that traditional MCQ-based benchmarks may not accurately measure LLMs' clinical knowledge and reasoning abilities, instead highlighting their pattern recognition skills. This study underscores the need for more robust evaluation methods to better assess the true capabilities of LLMs in medical contexts.
Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity
We present a comprehensive evaluation of Parameter-Efficient Fine-Tuning (PEFT) techniques for diverse medical image analysis tasks. PEFT is increasingly exploited as a valuable approach for knowledge transfer from pre-trained models in natural language processing, vision, speech, and cross-modal tasks, such as vision-language and text-to-image generation. However, its application in medical image analysis remains relatively unexplored. As foundation models are increasingly exploited in the medical domain, it is crucial to investigate and comparatively assess various strategies for knowledge transfer that can bolster a range of downstream tasks. Our study, the first of its kind (to the best of our knowledge), evaluates 16 distinct PEFT methodologies proposed for convolutional and transformer-based networks, focusing on image classification and text-to-image generation tasks across six medical datasets ranging in size, modality, and complexity. Through a battery of more than 600 controlled experiments, we demonstrate performance gains of up to 22% under certain scenarios and demonstrate the efficacy of PEFT for medical text-to-image generation. Further, we reveal the instances where PEFT methods particularly dominate over conventional fine-tuning approaches by studying their relationship with downstream data volume.
TOP-Training: Target-Oriented Pretraining for Medical Extractive Question Answering
We study extractive question-answering in the medical domain (Medical-EQA). This problem has two main challenges: (i) domain specificity, as most AI models lack necessary domain knowledge, and (ii) extraction-based answering style, which restricts most autoregressive LLMs due to potential hallucinations. To handle those challenges, we propose TOP-Training, a target-oriented pre-training paradigm that stands out among all domain adaptation techniques with two desirable features: (i) TOP-Training moves one step further than popular domain-oriented fine-tuning since it not only moves closer to the target domain, but also familiarizes itself with the target dataset, and (ii) it does not assume the existence of a large set of unlabeled instances from the target domain. Specifically, for a target Medical-EQA dataset, we extract its entities and leverage large language models (LLMs) to generate synthetic texts containing those entities; we then demonstrate that pretraining on this synthetic text data yields better performance on the target Medical-EQA benchmarks. Overall, our contributions are threefold: (i) TOP-Training, a new pretraining technique to effectively adapt LLMs to better solve a target problem, (ii) TOP-Training has a wide application scope because it does not require the target problem to have a large set of unlabeled data, and (iii) our experiments highlight the limitations of autoregressive LLMs, emphasizing TOP-Training as a means to unlock the true potential of bidirectional LLMs.
Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions
Visual Language Models (VLMs) have demonstrated impressive capabilities in visual grounding tasks. However, their effectiveness in the medical domain, particularly for abnormality detection and localization within medical images, remains underexplored. A major challenge is the complex and abstract nature of medical terminology, which makes it difficult to directly associate pathological anomaly terms with their corresponding visual features. In this work, we introduce a novel approach to enhance VLM performance in medical abnormality detection and localization by leveraging decomposed medical knowledge. Instead of directly prompting models to recognize specific abnormalities, we focus on breaking down medical concepts into fundamental attributes and common visual patterns. This strategy promotes a stronger alignment between textual descriptions and visual features, improving both the recognition and localization of abnormalities in medical images.We evaluate our method on the 0.23B Florence-2 base model and demonstrate that it achieves comparable performance in abnormality grounding to significantly larger 7B LLaVA-based medical VLMs, despite being trained on only 1.5% of the data used for such models. Experimental results also demonstrate the effectiveness of our approach in both known and previously unseen abnormalities, suggesting its strong generalization capabilities.
Zebra-Llama: A Context-Aware Large Language Model for Democratizing Rare Disease Knowledge
Rare diseases present unique challenges in healthcare, often suffering from delayed diagnosis and fragmented information landscapes. The scarcity of reliable knowledge in these conditions poses a distinct challenge for Large Language Models (LLMs) in supporting clinical management and delivering precise patient information underscoring the need for focused training on these 'zebra' cases. We present Zebra-Llama, a specialized context-aware language model with high precision Retrieval Augmented Generation (RAG) capability, focusing on Ehlers-Danlos Syndrome (EDS) as our case study. EDS, affecting 1 in 5,000 individuals, exemplifies the complexities of rare diseases with its diverse symptoms, multiple subtypes, and evolving diagnostic criteria. By implementing a novel context-aware fine-tuning methodology trained on questions derived from medical literature, patient experiences, and clinical resources, along with expertly curated responses, Zebra-Llama demonstrates unprecedented capabilities in handling EDS-related queries. On a test set of real-world questions collected from EDS patients and clinicians, medical experts evaluated the responses generated by both models, revealing Zebra-Llama's substantial improvements over base model (Llama 3.1-8B-Instruct) in thoroughness (77.5% vs. 70.1%), accuracy (83.0% vs. 78.8%), clarity (74.7% vs. 72.0%) and citation reliability (70.6% vs. 52.3%). Released as an open-source resource, Zebra-Llama not only provides more accessible and reliable EDS information but also establishes a framework for developing specialized AI solutions for other rare conditions. This work represents a crucial step towards democratizing expert-level knowledge in rare disease management, potentially transforming how healthcare providers and patients navigate the complex landscape of rare diseases.
SynLLM: A Comparative Analysis of Large Language Models for Medical Tabular Synthetic Data Generation via Prompt Engineering
Access to real-world medical data is often restricted due to privacy regulations, posing a significant barrier to the advancement of healthcare research. Synthetic data offers a promising alternative; however, generating realistic, clinically valid, and privacy-conscious records remains a major challenge. Recent advancements in Large Language Models (LLMs) offer new opportunities for structured data generation; however, existing approaches frequently lack systematic prompting strategies and comprehensive, multi-dimensional evaluation frameworks. In this paper, we present SynLLM, a modular framework for generating high-quality synthetic medical tabular data using 20 state-of-the-art open-source LLMs, including LLaMA, Mistral, and GPT variants, guided by structured prompts. We propose four distinct prompt types, ranging from example-driven to rule-based constraints, that encode schema, metadata, and domain knowledge to control generation without model fine-tuning. Our framework features a comprehensive evaluation pipeline that rigorously assesses generated data across statistical fidelity, clinical consistency, and privacy preservation. We evaluate SynLLM across three public medical datasets, including Diabetes, Cirrhosis, and Stroke, using 20 open-source LLMs. Our results show that prompt engineering significantly impacts data quality and privacy risk, with rule-based prompts achieving the best privacy-quality balance. SynLLM establishes that, when guided by well-designed prompts and evaluated with robust, multi-metric criteria, LLMs can generate synthetic medical data that is both clinically plausible and privacy-aware, paving the way for safer and more effective data sharing in healthcare research.
Evaluation of Language Models in the Medical Context Under Resource-Constrained Settings
Since the emergence of the Transformer architecture, language model development has increased, driven by their promising potential. However, releasing these models into production requires properly understanding their behavior, particularly in sensitive domains such as medicine. Despite this need, the medical literature still lacks technical assessments of pre-trained language models, which are especially valuable in resource-constrained settings in terms of computational power or limited budget. To address this gap, we provide a comprehensive survey of language models in the medical domain. In addition, we selected a subset of these models for thorough evaluation, focusing on classification and text generation tasks. Our subset encompasses 53 models, ranging from 110 million to 13 billion parameters, spanning the three families of Transformer-based models and from diverse knowledge domains. This study employs a series of approaches for text classification together with zero-shot prompting instead of model training or fine-tuning, which closely resembles the limited resource setting in which many users of language models find themselves. Encouragingly, our findings reveal remarkable performance across various tasks and datasets, underscoring the latent potential of certain models to contain medical knowledge, even without domain specialization. Consequently, our study advocates for further exploration of model applications in medical contexts, particularly in resource-constrained settings. The code is available on https://github.com/anpoc/Language-models-in-medicine.
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
MIRIAD: Augmenting LLMs with millions of medical query-response pairs
LLMs are bound to transform healthcare with advanced decision support and flexible chat assistants. However, LLMs are prone to generate inaccurate medical content. To ground LLMs in high-quality medical knowledge, LLMs have been equipped with external knowledge via RAG, where unstructured medical knowledge is split into small text chunks that can be selectively retrieved and integrated into the LLMs context. Yet, existing RAG pipelines rely on raw, unstructured medical text, which can be noisy, uncurated and difficult for LLMs to effectively leverage. Systematic approaches to organize medical knowledge to best surface it to LLMs are generally lacking. To address these challenges, we introduce MIRIAD, a large-scale, curated corpus of 5,821,948 medical QA pairs, each rephrased from and grounded in a passage from peer-reviewed medical literature using a semi-automated pipeline combining LLM generation, filtering, grounding, and human annotation. Unlike prior medical corpora, which rely on unstructured text, MIRIAD encapsulates web-scale medical knowledge in an operationalized query-response format, which enables more targeted retrieval. Experiments on challenging medical QA benchmarks show that augmenting LLMs with MIRIAD improves accuracy up to 6.7% compared to unstructured RAG baselines with the same source corpus and with the same amount of retrieved text. Moreover, MIRIAD improved the ability of LLMs to detect medical hallucinations by 22.5 to 37% (increase in F1 score). We further introduce MIRIAD-Atlas, an interactive map of MIRIAD spanning 56 medical disciplines, enabling clinical users to visually explore, search, and refine medical knowledge. MIRIAD promises to unlock a wealth of down-stream applications, including medical information retrievers, enhanced RAG applications, and knowledge-grounded chat interfaces, which ultimately enables more reliable LLM applications in healthcare.
AutoMIR: Effective Zero-Shot Medical Information Retrieval without Relevance Labels
Medical information retrieval (MIR) is essential for retrieving relevant medical knowledge from diverse sources, including electronic health records, scientific literature, and medical databases. However, achieving effective zero-shot dense retrieval in the medical domain poses substantial challenges due to the lack of relevance-labeled data. In this paper, we introduce a novel approach called Self-Learning Hypothetical Document Embeddings (SL-HyDE) to tackle this issue. SL-HyDE leverages large language models (LLMs) as generators to generate hypothetical documents based on a given query. These generated documents encapsulate key medical context, guiding a dense retriever in identifying the most relevant documents. The self-learning framework progressively refines both pseudo-document generation and retrieval, utilizing unlabeled medical corpora without requiring any relevance-labeled data. Additionally, we present the Chinese Medical Information Retrieval Benchmark (CMIRB), a comprehensive evaluation framework grounded in real-world medical scenarios, encompassing five tasks and ten datasets. By benchmarking ten models on CMIRB, we establish a rigorous standard for evaluating medical information retrieval systems. Experimental results demonstrate that SL-HyDE significantly surpasses existing methods in retrieval accuracy while showcasing strong generalization and scalability across various LLM and retriever configurations. CMIRB data and evaluation code are publicly available at: https://github.com/CMIRB-benchmark/CMIRB.
R2MED: A Benchmark for Reasoning-Driven Medical Retrieval
Current medical retrieval benchmarks primarily emphasize lexical or shallow semantic similarity, overlooking the reasoning-intensive demands that are central to clinical decision-making. In practice, physicians often retrieve authoritative medical evidence to support diagnostic hypotheses. Such evidence typically aligns with an inferred diagnosis rather than the surface form of a patient's symptoms, leading to low lexical or semantic overlap between queries and relevant documents. To address this gap, we introduce R2MED, the first benchmark explicitly designed for reasoning-driven medical retrieval. It comprises 876 queries spanning three tasks: Q&A reference retrieval, clinical evidence retrieval, and clinical case retrieval. These tasks are drawn from five representative medical scenarios and twelve body systems, capturing the complexity and diversity of real-world medical information needs. We evaluate 15 widely-used retrieval systems on R2MED and find that even the best model achieves only 31.4 nDCG@10, demonstrating the benchmark's difficulty. Classical re-ranking and generation-augmented retrieval methods offer only modest improvements. Although large reasoning models improve performance via intermediate inference generation, the best results still peak at 41.4 nDCG@10. These findings underscore a substantial gap between current retrieval techniques and the reasoning demands of real clinical tasks. We release R2MED as a challenging benchmark to foster the development of next-generation medical retrieval systems with enhanced reasoning capabilities. Data and code are available at https://github.com/R2MED/R2MED
Biomedical Concept Relatedness -- A large EHR-based benchmark
A promising application of AI to healthcare is the retrieval of information from electronic health records (EHRs), e.g. to aid clinicians in finding relevant information for a consultation or to recruit suitable patients for a study. This requires search capabilities far beyond simple string matching, including the retrieval of concepts (diagnoses, symptoms, medications, etc.) related to the one in question. The suitability of AI methods for such applications is tested by predicting the relatedness of concepts with known relatedness scores. However, all existing biomedical concept relatedness datasets are notoriously small and consist of hand-picked concept pairs. We open-source a novel concept relatedness benchmark overcoming these issues: it is six times larger than existing datasets and concept pairs are chosen based on co-occurrence in EHRs, ensuring their relevance for the application of interest. We present an in-depth analysis of our new dataset and compare it to existing ones, highlighting that it is not only larger but also complements existing datasets in terms of the types of concepts included. Initial experiments with state-of-the-art embedding methods show that our dataset is a challenging new benchmark for testing concept relatedness models.
Enhancing Healthcare through Large Language Models: A Study on Medical Question Answering
In recent years, the application of Large Language Models (LLMs) in healthcare has shown significant promise in improving the accessibility and dissemination of medical knowledge. This paper presents a detailed study of various LLMs trained on the MedQuAD medical question-answering dataset, with a focus on identifying the most effective model for providing accurate medical information. Among the models tested, the Sentence-t5 combined with Mistral 7B demonstrated superior performance, achieving a precision score of 0.762. This model's enhanced capabilities are attributed to its advanced pretraining techniques, robust architecture, and effective prompt construction methodologies. By leveraging these strengths, the Sentence-t5 + Mistral 7B model excels in understanding and generating precise medical answers. Our findings highlight the potential of integrating sophisticated LLMs in medical contexts to facilitate efficient and accurate medical knowledge retrieval, thus significantly enhancing patient education and support.
Efficient Medical Question Answering with Knowledge-Augmented Question Generation
In the expanding field of language model applications, medical knowledge representation remains a significant challenge due to the specialized nature of the domain. Large language models, such as GPT-4, obtain reasonable scores on medical question answering tasks, but smaller models are far behind. In this work, we introduce a method to improve the proficiency of a small language model in the medical domain by employing a two-fold approach. We first fine-tune the model on a corpus of medical textbooks. Then, we use GPT-4 to generate questions similar to the downstream task, prompted with textbook knowledge, and use them to fine-tune the model. Additionally, we introduce ECN-QA, a novel medical question answering dataset containing ``progressive questions'' composed of related sequential questions. We show the benefits of our training strategy on this dataset. The study's findings highlight the potential of small language models in the medical domain when appropriately fine-tuned. The code and weights are available at https://github.com/raidium-med/MQG.
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs
People increasingly search online for answers to their medical questions but the rate at which medical questions are asked online significantly exceeds the capacity of qualified people to answer them. This leaves many questions unanswered or inadequately answered. Many of these questions are not unique, and reliable identification of similar questions would enable more efficient and effective question answering schema. COVID-19 has only exacerbated this problem. Almost every government agency and healthcare organization has tried to meet the informational need of users by building online FAQs, but there is no way for people to ask their question and know if it is answered on one of these pages. While many research efforts have focused on the problem of general question similarity, these approaches do not generalize well to domains that require expert knowledge to determine semantic similarity, such as the medical domain. In this paper, we show how a double fine-tuning approach of pretraining a neural network on medical question-answer pairs followed by fine-tuning on medical question-question pairs is a particularly useful intermediate task for the ultimate goal of determining medical question similarity. While other pretraining tasks yield an accuracy below 78.7% on this task, our model achieves an accuracy of 82.6% with the same number of training examples, an accuracy of 80.0% with a much smaller training set, and an accuracy of 84.5% when the full corpus of medical question-answer data is used. We also describe a currently live system that uses the trained model to match user questions to COVID-related FAQs.
Language Models are Surprisingly Fragile to Drug Names in Biomedical Benchmarks
Medical knowledge is context-dependent and requires consistent reasoning across various natural language expressions of semantically equivalent phrases. This is particularly crucial for drug names, where patients often use brand names like Advil or Tylenol instead of their generic equivalents. To study this, we create a new robustness dataset, RABBITS, to evaluate performance differences on medical benchmarks after swapping brand and generic drug names using physician expert annotations. We assess both open-source and API-based LLMs on MedQA and MedMCQA, revealing a consistent performance drop ranging from 1-10\%. Furthermore, we identify a potential source of this fragility as the contamination of test data in widely used pre-training datasets. All code is accessible at https://github.com/BittermanLab/RABBITS, and a HuggingFace leaderboard is available at https://huggingface.co/spaces/AIM-Harvard/rabbits-leaderboard.
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
To combat COVID-19, both clinicians and scientists need to digest vast amounts of relevant biomedical knowledge in scientific literature to understand the disease mechanism and related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities and their visual chemical structures, relations, and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence.
BioLORD: Learning Ontological Representations from Definitions (for Biomedical Concepts and their Textual Descriptions)
This work introduces BioLORD, a new pre-training strategy for producing meaningful representations for clinical sentences and biomedical concepts. State-of-the-art methodologies operate by maximizing the similarity in representation of names referring to the same concept, and preventing collapse through contrastive learning. However, because biomedical names are not always self-explanatory, it sometimes results in non-semantic representations. BioLORD overcomes this issue by grounding its concept representations using definitions, as well as short descriptions derived from a multi-relational knowledge graph consisting of biomedical ontologies. Thanks to this grounding, our model produces more semantic concept representations that match more closely the hierarchical structure of ontologies. BioLORD establishes a new state of the art for text similarity on both clinical sentences (MedSTS) and biomedical concepts (MayoSRS).
ReMeDi: Resources for Multi-domain, Multi-service, Medical Dialogues
Medical dialogue systems (MDSs) aim to assist doctors and patients with a range of professional medical services, i.e., diagnosis, treatment and consultation. The development of MDSs is hindered because of a lack of resources. In particular. (1) there is no dataset with large-scale medical dialogues that covers multiple medical services and contains fine-grained medical labels (i.e., intents, actions, slots, values), and (2) there is no set of established benchmarks for MDSs for multi-domain, multi-service medical dialogues. In this paper, we present ReMeDi, a set of resource for medical dialogues. ReMeDi consists of two parts, the ReMeDi dataset and the ReMeDi benchmarks. The ReMeDi dataset contains 96,965 conversations between doctors and patients, including 1,557 conversations with fine-gained labels. It covers 843 types of diseases, 5,228 medical entities, and 3 specialties of medical services across 40 domains. To the best of our knowledge, the ReMeDi dataset is the only medical dialogue dataset that covers multiple domains and services, and has fine-grained medical labels. The second part of the ReMeDi resources consists of a set of state-of-the-art models for (medical) dialogue generation. The ReMeDi benchmark has the following methods: (1) pretrained models (i.e., BERT-WWM, BERT-MED, GPT2, and MT5) trained, validated, and tested on the ReMeDi dataset, and (2) a self-supervised contrastive learning(SCL) method to expand the ReMeDi dataset and enhance the training of the state-of-the-art pretrained models. We describe the creation of the ReMeDi dataset, the ReMeDi benchmarking methods, and establish experimental results using the ReMeDi benchmarking methods on the ReMeDi dataset for future research to compare against. With this paper, we share the dataset, implementations of the benchmarks, and evaluation scripts.
Do Dogs have Whiskers? A New Knowledge Base of hasPart Relations
We present a new knowledge-base of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old's vocabulary), as well as having several times more hasPart entries than in the popular ontologies ConceptNet and WordNet. In addition, it contains information about quantifiers, argument modifiers, and links the entities to appropriate concepts in Wikipedia and WordNet. The knowledge base is available at https://allenai.org/data/haspartkb
YAGO 4.5: A Large and Clean Knowledge Base with a Rich Taxonomy
Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.
A Systematic Investigation of KB-Text Embedding Alignment at Scale
Knowledge bases (KBs) and text often contain complementary knowledge: KBs store structured knowledge that can support long range reasoning, while text stores more comprehensive and timely knowledge in an unstructured way. Separately embedding the individual knowledge sources into vector spaces has demonstrated tremendous successes in encoding the respective knowledge, but how to jointly embed and reason with both knowledge sources to fully leverage the complementary information is still largely an open problem. We conduct a large-scale, systematic investigation of aligning KB and text embeddings for joint reasoning. We set up a novel evaluation framework with two evaluation tasks, few-shot link prediction and analogical reasoning, and evaluate an array of KB-text embedding alignment methods. We also demonstrate how such alignment can infuse textual information into KB embeddings for more accurate link prediction on emerging entities and events, using COVID-19 as a case study.
Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models
Large-scale language models (LLMs) have achieved remarkable success across various language tasks but suffer from hallucinations and temporal misalignment. To mitigate these shortcomings, Retrieval-augmented generation (RAG) has been utilized to provide external knowledge to facilitate the answer generation. However, applying such models to the medical domain faces several challenges due to the lack of domain-specific knowledge and the intricacy of real-world scenarios. In this study, we explore LLMs with RAG framework for knowledge-intensive tasks in the medical field. To evaluate the capabilities of LLMs, we introduce MedicineQA, a multi-round dialogue benchmark that simulates the real-world medication consultation scenario and requires LLMs to answer with retrieved evidence from the medicine database. MedicineQA contains 300 multi-round question-answering pairs, each embedded within a detailed dialogue history, highlighting the challenge posed by this knowledge-intensive task to current LLMs. We further propose a new Distill-Retrieve-Read framework instead of the previous Retrieve-then-Read. Specifically, the distillation and retrieval process utilizes a tool calling mechanism to formulate search queries that emulate the keyword-based inquiries used by search engines. With experimental results, we show that our framework brings notable performance improvements and surpasses the previous counterparts in the evidence retrieval process in terms of evidence retrieval accuracy. This advancement sheds light on applying RAG to the medical domain.
COMETA: A Corpus for Medical Entity Linking in the Social Media
Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman's language. Meanwhile, there is a growing need for applications that can understand the public's voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.
Lessons from Natural Language Inference in the Clinical Domain
State of the art models using deep neural networks have become very good in learning an accurate mapping from inputs to outputs. However, they still lack generalization capabilities in conditions that differ from the ones encountered during training. This is even more challenging in specialized, and knowledge intensive domains, where training data is limited. To address this gap, we introduce MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI), grounded in the medical history of patients. We present strategies to: 1) leverage transfer learning using datasets from the open domain, (e.g. SNLI) and 2) incorporate domain knowledge from external data and lexical sources (e.g. medical terminologies). Our results demonstrate performance gains using both strategies.
Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data
In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.
A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis
While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations. We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images. A key finding we show empirically is that existing visual backbones lack an appropriate prior from the architecture for reliable generalization in these settings. Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language. To this end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that incorporates knowledge priors that constrain it to reason with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses retrieval-augmented language models to design an appropriate concept space paired with an automatic training procedure for recognizing the concept. We evaluate different resources of knowledge and recognition architectures on a broad range of domain shifts across 20 datasets. In our comprehensive evaluation with two imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets by 32.4% on average. Finally, evaluations reveal that PubMed is a promising resource for making medical models less sensitive to domain shift, outperforming other resources on both diversity of information and final prediction performance.
Evidence Inference 2.0: More Data, Better Models
How do we most effectively treat a disease or condition? Ideally, we could consult a database of evidence gleaned from clinical trials to answer such questions. Unfortunately, no such database exists; clinical trial results are instead disseminated primarily via lengthy natural language articles. Perusing all such articles would be prohibitively time-consuming for healthcare practitioners; they instead tend to depend on manually compiled systematic reviews of medical literature to inform care. NLP may speed this process up, and eventually facilitate immediate consult of published evidence. The Evidence Inference dataset was recently released to facilitate research toward this end. This task entails inferring the comparative performance of two treatments, with respect to a given outcome, from a particular article (describing a clinical trial) and identifying supporting evidence. For instance: Does this article report that chemotherapy performed better than surgery for five-year survival rates of operable cancers? In this paper, we collect additional annotations to expand the Evidence Inference dataset by 25\%, provide stronger baseline models, systematically inspect the errors that these make, and probe dataset quality. We also release an abstract only (as opposed to full-texts) version of the task for rapid model prototyping. The updated corpus, documentation, and code for new baselines and evaluations are available at http://evidence-inference.ebm-nlp.com/.
PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case Reports in PubMed Central
Objective: Data unavailability has been one of the biggest barriers in clinical natural language processing. This paper is aimed at providing a large-scale and publicly available patient note dataset, named PMC-Patients, with relevant articles and similar patients annotations. The ultimate goal of PMC-Patients is to facilitate the development of retrieval-based clinical decision support systems. Materials and Methods: To collect PMC-Patients, we extract patient notes from case reports in PubMed Central by recognizing certain section patterns. Patient-article relevance and patient-patient similarity are annotated by citation relationships in PubMed. In addition, we perform three tasks with PMC-Patients to demonstrate its utility in providing clinical decision support for a given patient, including (1) classifying whether another patient is similar, (2) retrieving similar patients in PMC-Patients, and (3) retrieving relevant articles in PubMed. Results: We collect and release PMC-Patients under the CC BY-NC-SA license, which becomes the largest publicly available patient note dataset so far. PMC-Patients contains 167k patient notes that are annotated with 3.1M relevant articles and 293k similar patients. Qualitative and quantitative analyses reveal the high quality and richness of our dataset. Experiments show that classifying the similarity of patient pairs is relatively easy, but it is hard to retrieve similar patients or relevant articles for a given patient from a large set of candidates. Conclusion: We present PMC-Patients, a large-scale dataset of patient notes with high quality, easy access, diverse conditions, and rich annotations. The proposed dataset can also serve as a hard benchmark for evaluating retrieval-based clinical decision support systems.
Medical Adaptation of Large Language and Vision-Language Models: Are We Making Progress?
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare seven public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting regime for medical question-answering (QA) tasks. For instance, across the tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 12.1% of cases, reach a (statistical) tie in 49.8% of cases, and are significantly worse than their base models in the remaining 38.2% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
To Generate or to Retrieve? On the Effectiveness of Artificial Contexts for Medical Open-Domain Question Answering
Medical open-domain question answering demands substantial access to specialized knowledge. Recent efforts have sought to decouple knowledge from model parameters, counteracting architectural scaling and allowing for training on common low-resource hardware. The retrieve-then-read paradigm has become ubiquitous, with model predictions grounded on relevant knowledge pieces from external repositories such as PubMed, textbooks, and UMLS. An alternative path, still under-explored but made possible by the advent of domain-specific large language models, entails constructing artificial contexts through prompting. As a result, "to generate or to retrieve" is the modern equivalent of Hamlet's dilemma. This paper presents MedGENIE, the first generate-then-read framework for multiple-choice question answering in medicine. We conduct extensive experiments on MedQA-USMLE, MedMCQA, and MMLU, incorporating a practical perspective by assuming a maximum of 24GB VRAM. MedGENIE sets a new state-of-the-art (SOTA) in the open-book setting of each testbed, even allowing a small-scale reader to outcompete zero-shot closed-book 175B baselines while using up to 706times fewer parameters. Overall, our findings reveal that generated passages are more effective than retrieved counterparts in attaining higher accuracy.
COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain
Large Language Models (LLMs) constitute a breakthrough state-of-the-art Artificial Intelligence (AI) technology which is rapidly evolving and promises to aid in medical diagnosis either by assisting doctors or by simulating a doctor's workflow in more advanced and complex implementations. In this technical paper, we outline Cognitive Network Evaluation Toolkit for Medical Domains (COGNET-MD), which constitutes a novel benchmark for LLM evaluation in the medical domain. Specifically, we propose a scoring-framework with increased difficulty to assess the ability of LLMs in interpreting medical text. The proposed framework is accompanied with a database of Multiple Choice Quizzes (MCQs). To ensure alignment with current medical trends and enhance safety, usefulness, and applicability, these MCQs have been constructed in collaboration with several associated medical experts in various medical domains and are characterized by varying degrees of difficulty. The current (first) version of the database includes the medical domains of Psychiatry, Dentistry, Pulmonology, Dermatology and Endocrinology, but it will be continuously extended and expanded to include additional medical domains.
MeSH Suggester: A Library and System for MeSH Term Suggestion for Systematic Review Boolean Query Construction
Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms to include in the query. In our previous work, we created neural MeSH term suggestion methods and compared them to state-of-the-art MeSH term suggestion methods. We found neural MeSH term suggestion methods to be highly effective. In this demonstration, we build upon our previous work by creating (1) a Web-based MeSH term suggestion prototype system that allows users to obtain suggestions from a number of underlying methods and (2) a Python library that implements ours and others' MeSH term suggestion methods and that is aimed at researchers who want to further investigate, create or deploy such type of methods. We describe the architecture of the web-based system and how to use it for the MeSH term suggestion task. For the Python library, we describe how the library can be used for advancing further research and experimentation, and we validate the results of the methods contained in the library on standard datasets. Our web-based prototype system is available at http://ielab-mesh-suggest.uqcloud.net, while our Python library is at https://github.com/ielab/meshsuggestlib.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
CURE: Clinical Understanding & Retrieval Evaluation
Given the dominance of dense retrievers that do not generalize well beyond their training dataset distributions, domain-specific test sets are essential in evaluating retrieval. There are few test datasets for retrieval systems intended for use by healthcare providers in a point-of-care setting. To fill this gap we have collaborated with medical professionals to create CURE, an ad-hoc retrieval test dataset for passage ranking with 2000 queries spanning 10 medical domains with a monolingual (English) and two cross-lingual (French/Spanish -> English) conditions. In this paper, we describe how CURE was constructed and provide baseline results to showcase its effectiveness as an evaluation tool. CURE is published with a Creative Commons Attribution Non Commercial 4.0 license and can be accessed on Hugging Face.
A Methodology to Generate Virtual Patient Repositories
Electronic medical records (EMR) contain sensitive personal information. For example, they may include details about infectious diseases, such as human immunodeficiency virus (HIV), or they may contain information about a mental illness. They may also contain other sensitive information such as medical details related to fertility treatments. Because EMRs are subject to confidentiality requirements, accessing and analyzing EMR databases is a privilege given to only a small number of individuals. Individuals who work at institutions that do not have access to EMR systems have no opportunity to gain hands-on experience with this valuable resource. Simulated medical databases are currently available; however, they are difficult to configure and are limited in their resemblance to real clinical databases. Generating highly accessible repositories of virtual patient EMRs while relying only minimally on real patient data is expected to serve as a valuable resource to a broader audience of medical personnel, including those who reside in underdeveloped countries.
LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them
The recent success of Large Language Models (LLMs) has had a significant impact on the healthcare field, providing patients with medical advice, diagnostic information, and more. However, due to a lack of professional medical knowledge, patients are easily misled by generated erroneous information from LLMs, which may result in serious medical problems. To address this issue, we focus on tuning the LLMs to be medical assistants who collaborate with more experienced doctors. We first conduct a two-stage survey by inspiration-feedback to gain a broad understanding of the real needs of doctors for medical assistants. Based on this, we construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors, which includes 92K Q\&A samples from 22 tasks and 27 specialists. Moreover, we evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-test containing 550 single-turn Q\&A and DotaBench containing 74 multi-turn conversations. The evaluation results indicate that being a medical assistant still poses challenges for existing open-source models, but DoctorFLAN can help them significantly. It demonstrates that the doctor-oriented dataset and benchmarks we construct can complement existing patient-oriented work and better promote medical LLMs research.
Augmenting Black-box LLMs with Medical Textbooks for Clinical Question Answering
Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation.
A Search Engine for Discovery of Scientific Challenges and Directions
Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/
