Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePSA: Pyramid Sparse Attention for Efficient Video Understanding and Generation
Attention mechanisms are the core of foundation models, but their quadratic complexity remains a critical bottleneck for scaling. This challenge has driven the development of efficient attention mechanisms, with sparsity emerging as the dominant paradigm. Current methods typically retain or discard entire key-value blocks with binary masks, resulting in substantial information loss under high sparsity. To mitigate this gap, we present Pyramid Sparse Attention (PSA), a versatile module applicable to both video understanding and generation tasks. Instead of binary masking, PSA introduces multi-level pooled KV representations, enabling finer mask granularity. Specifically, each query block dynamically allocates lower pooling levels to critical KV blocks and higher levels to less important ones, creating an informative interpolation between full retention and complete pruning. This design, analogous to fixed-point quantization and classical feature pyramid networks in computer vision, effectively mitigates information loss while preserving computational efficiency under a low compute budget. It works with a native, hardware-friendly kernel that leverages decoupled block-tile design to ensure efficient execution. Across video understanding and generation benchmarks, PSA preserves contextual information and visual fidelity, consistently outperforming or achieving comparable performance over existing sparse attention baselines with superior efficiency-quality trade-offs. Our code and model weights are publicly available at: http://ziplab.co/PSA
FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion
Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.
Guaranteed Guess: A Language Modeling Approach for CISC-to-RISC Transpilation with Testing Guarantees
The hardware ecosystem is rapidly evolving, with increasing interest in translating low-level programs across different instruction set architectures (ISAs) in a quick, flexible, and correct way to enhance the portability and longevity of existing code. A particularly challenging class of this transpilation problem is translating between complex- (CISC) and reduced- (RISC) hardware architectures, due to fundamental differences in instruction complexity, memory models, and execution paradigms. In this work, we introduce GG (Guaranteed Guess), an ISA-centric transpilation pipeline that combines the translation power of pre-trained large language models (LLMs) with the rigor of established software testing constructs. Our method generates candidate translations using an LLM from one ISA to another, and embeds such translations within a software-testing framework to build quantifiable confidence in the translation. We evaluate our GG approach over two diverse datasets, enforce high code coverage (>98%) across unit tests, and achieve functional/semantic correctness of 99% on HumanEval programs and 49% on BringupBench programs, respectively. Further, we compare our approach to the state-of-the-art Rosetta 2 framework on Apple Silicon, showcasing 1.73x faster runtime performance, 1.47x better energy efficiency, and 2.41x better memory usage for our transpiled code, demonstrating the effectiveness of GG for real-world CISC-to-RISC translation tasks. We will open-source our codes, data, models, and benchmarks to establish a common foundation for ISA-level code translation research.
Closing the Performance Gap with Modern C++
On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.
MABFuzz: Multi-Armed Bandit Algorithms for Fuzzing Processors
As the complexities of processors keep increasing, the task of effectively verifying their integrity and security becomes ever more daunting. The intricate web of instructions, microarchitectural features, and interdependencies woven into modern processors pose a formidable challenge for even the most diligent verification and security engineers. To tackle this growing concern, recently, researchers have developed fuzzing techniques explicitly tailored for hardware processors. However, a prevailing issue with these hardware fuzzers is their heavy reliance on static strategies to make decisions in their algorithms. To address this problem, we develop a novel dynamic and adaptive decision-making framework, MABFuzz, that uses multi-armed bandit (MAB) algorithms to fuzz processors. MABFuzz is agnostic to, and hence, applicable to, any existing hardware fuzzer. In the process of designing MABFuzz, we encounter challenges related to the compatibility of MAB algorithms with fuzzers and maximizing their efficacy for fuzzing. We overcome these challenges by modifying the fuzzing process and tailoring MAB algorithms to accommodate special requirements for hardware fuzzing. We integrate three widely used MAB algorithms in a state-of-the-art hardware fuzzer and evaluate them on three popular RISC-V-based processors. Experimental results demonstrate the ability of MABFuzz to cover a broader spectrum of processors' intricate landscapes and doing so with remarkable efficiency. In particular, MABFuzz achieves up to 308x speedup in detecting vulnerabilities and up to 5x speedup in achieving coverage compared to a state-of-the-art technique.
Implementing and Optimizing the Scaled Dot-Product Attention on Streaming Dataflow
Transformer models serve as the backbone of many state-ofthe-art language models, and most use the scaled dot-product attention (SDPA) mechanism to capture relationships between tokens. However, the straightforward implementation of SDPA has quadratic compute and memory complexity with respect to the sequence length. On processor architectures such as GPUs and TPUs, there is a robust body of prior work. However, little work has been performed on non-processor architectures.In this work, we show how the architecture and execution model of Streaming Dataflow Accelerators can help tackle this challenge. We first define abstract hardware that adopts a streaming execution model, and we implement a cycle-accurate simulator of the abstract hardware using the Dataflow Abstract Machine simulation framework. Second, we implement the naive SDPA algorithm on this abstract hardware and show it requires linear (O(N)) intermediate memory. Third, we then modify the naive algorithm, taking inspiration from prior processor-oriented works, by reordering the multiplication and division operations. Finally, we map the modified algorithm to abstract hardware, and confirm that the implementation computes SDPA at full throughput while only using a constant amount (O(1)) of intermediate memory.
HipKittens: Fast and Furious AMD Kernels
AMD GPUs offer state-of-the-art compute and memory bandwidth; however, peak performance AMD kernels are written in raw assembly. To address the difficulty of mapping AI algorithms to hardware, recent work proposes C++ embedded and PyTorch-inspired domain-specific languages like ThunderKittens (TK) to simplify high performance AI kernel development on NVIDIA hardware. We explore the extent to which such primitives -- for explicit tile-based programming with optimized memory accesses and fine-grained asynchronous execution across workers -- are NVIDIA-specific or general. We provide the first detailed study of the programming primitives that lead to performant AMD AI kernels, and we encapsulate these insights in the HipKittens (HK) programming framework. We find that tile-based abstractions used in prior DSLs generalize to AMD GPUs, however we need to rethink the algorithms that instantiate these abstractions for AMD. We validate the HK primitives across CDNA3 and CDNA4 AMD platforms. In evaluations, HK kernels compete with AMD's hand-optimized assembly kernels for GEMMs and attention, and consistently outperform compiler baselines. Moreover, assembly is difficult to scale to the breadth of AI workloads; reflecting this, in some settings HK outperforms all available kernel baselines by 1.2-2.4times (e.g., d=64 attention, GQA backwards, memory-bound kernels). These findings help pave the way for a single, tile-based software layer for high-performance AI kernels that translates across GPU vendors. HipKittens is released at: https://github.com/HazyResearch/HipKittens.
How Many Instructions Can LLMs Follow at Once?
Production-grade LLM systems require robust adherence to dozens or even hundreds of instructions simultaneously. However, the instruction-following capabilities of LLMs at high instruction densities have not yet been characterized, as existing benchmarks only evaluate models on tasks with a single or few instructions. We introduce IFScale, a simple benchmark of 500 keyword-inclusion instructions for a business report writing task to measure how instruction-following performance degrades as instruction density increases. We evaluate 20 state-of-the-art models across seven major providers and find that even the best frontier models only achieve 68% accuracy at the max density of 500 instructions. Our analysis reveals model size and reasoning capability to correlate with 3 distinct performance degradation patterns, bias towards earlier instructions, and distinct categories of instruction-following errors. Our insights can help inform design of instruction-dense prompts in real-world applications and highlight important performance-latency tradeoffs. We open-source the benchmark and all results for further analysis at https://distylai.github.io/IFScale.
AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation
Assertions have been the de facto collateral for simulation-based and formal verification of hardware designs for over a decade. The quality of hardware verification, \ie, detection and diagnosis of corner-case design bugs, is critically dependent on the quality of the assertions. There has been a considerable amount of research leveraging a blend of data-driven statistical analysis and static analysis to generate high-quality assertions from hardware design source code and design execution trace data. Despite such concerted effort, all prior research struggles to scale to industrial-scale large designs, generates too many low-quality assertions, often fails to capture subtle and non-trivial design functionality, and does not produce any easy-to-comprehend explanations of the generated assertions to understand assertions' suitability to different downstream validation tasks. Recently, with the advent of Large-Language Models (LLMs), there has been a widespread effort to leverage prompt engineering to generate assertions. However, there is little effort to quantitatively establish the effectiveness and suitability of various LLMs for assertion generation. In this paper, we present AssertionBench, a novel benchmark to evaluate LLMs' effectiveness for assertion generation quantitatively. AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM. We use AssertionBench to compare state-of-the-art LLMs to assess their effectiveness in inferring functionally correct assertions for hardware designs. Our experiments demonstrate how LLMs perform relative to each other, the benefits of using more in-context exemplars in generating a higher fraction of functionally correct assertions, and the significant room for improvement for LLM-based assertion generators.
ChipSeek-R1: Generating Human-Surpassing RTL with LLM via Hierarchical Reward-Driven Reinforcement Learning
Large Language Models (LLMs) show significant potential for automating Register-Transfer Level (RTL) code generation. However, current approaches face a critical challenge: they can not simultaneously optimize for functional correctness and hardware quality (Power, Performance, Area - PPA). Methods based on supervised fine-tuning often generate functionally correct but PPA-suboptimal code, lacking mechanisms to learn optimization principles. In contrast, post-processing techniques that attempt to improve PPA metrics after generation are often inefficient because they operate externally without updating the LLM's parameters, thus failing to enhance the model's intrinsic design capabilities. To bridge this gap, we introduce ChipSeek-R1, a hierarchical reward-driven reinforcement learning framework to train LLMs to generate RTL code that achieves both functional correctness and optimized PPA metrics. ChipSeek-R1 employs a hierarchical reward system, which incorporates direct feedback on syntax, functional correctness (from simulators) and PPA metrics (from synthesis tools) during reinforcement learning. This enables the model to learn complex hardware design trade-offs via trial-and-error, generating RTL code that is both functionally correct and PPA-optimized. Evaluating ChipSeek-R1 on standard benchmarks (VerilogEval, RTLLM), we achieve state-of-the-art results in functional correctness. Notably, on the RTLLM benchmark, ChipSeek-R1 generated 27 RTL designs surpassing the PPA metrics of the original human-written code. Our findings demonstrate the effectiveness of integrating toolchain feedback into LLM training and highlight the potential for reinforcement learning to enable automated generation of human-surpassing RTL code. We open-source our code in anonymous github.
New Solutions on LLM Acceleration, Optimization, and Application
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a wide range of applications. However, the increasing size and complexity of LLMs present significant challenges in both training and deployment, leading to substantial computational and storage costs as well as heightened energy consumption. In this paper, we provide a review of recent advancements and research directions aimed at addressing these challenges and enhancing the efficiency of LLM-based systems. We begin by discussing algorithm-level acceleration techniques focused on optimizing LLM inference speed and resource utilization. We also explore LLM-hardware co-design strategies with a vision to improve system efficiency by tailoring hardware architectures to LLM requirements. Further, we delve into LLM-to-accelerator compilation approaches, which involve customizing hardware accelerators for efficient LLM deployment. Finally, as a case study to leverage LLMs for assisting circuit design, we examine LLM-aided design methodologies for an important task: High-Level Synthesis (HLS) functional verification, by creating a new dataset that contains a large number of buggy and bug-free codes, which can be essential for training LLMs to specialize on HLS verification and debugging. For each aspect mentioned above, we begin with a detailed background study, followed by the presentation of several novel solutions proposed to overcome specific challenges. We then outline future research directions to drive further advancements. Through these efforts, we aim to pave the way for more efficient and scalable deployment of LLMs across a diverse range of applications.
Verde: Verification via Refereed Delegation for Machine Learning Programs
Machine learning programs, such as those performing inference, fine-tuning, and training of LLMs, are commonly delegated to untrusted compute providers. To provide correctness guarantees for the client, we propose adapting the cryptographic notion of refereed delegation to the machine learning setting. This approach enables a computationally limited client to delegate a program to multiple untrusted compute providers, with a guarantee of obtaining the correct result if at least one of them is honest. Refereed delegation of ML programs poses two technical hurdles: (1) an arbitration protocol to resolve disputes when compute providers disagree on the output, and (2) the ability to bitwise reproduce ML programs across different hardware setups, For (1), we design Verde, a dispute arbitration protocol that efficiently handles the large scale and graph-based computational model of modern ML programs. For (2), we build RepOps (Reproducible Operators), a library that eliminates hardware "non-determinism" by controlling the order of floating point operations performed on all hardware. Our implementation shows that refereed delegation achieves both strong guarantees for clients and practical overheads for compute providers.
BOLT: Bandwidth-Optimized Lightning-Fast Oblivious Map powered by Secure HBM Accelerators
While Trusted Execution Environments provide a strong foundation for secure cloud computing, they remain vulnerable to access pattern leakages. Oblivious Maps (OMAPs) mitigate this by fully hiding access patterns but suffer from high overhead due to randomized remapping and worst-case padding. We argue these costs are not fundamental. Modern accelerators featuring High-Bandwidth Memory (HBM) offer a new opportunity: Vaswani et al. [OSDI'18] point out that eavesdropping on HBM is difficult -- even for physical attackers -- as its memory channels are sealed together with processor cores inside the same physical package. Later, Hunt et al. [NSDI'20] show that, with proper isolation, HBM can be turned into an unobservable region where both data and memory traces are hidden. This motivates a rethink of OMAP design with HBM-backed solutions to finally overcome their traditional performance limits. Building on these insights, we present BOLT, a Bandwidth Optimized, Lightning-fast OMAP accelerator that, for the first time, achieves O(1) + O(log_2(log_2 (N))) bandwidth overhead. BOLT introduces three key innovations: (i) a new OMAP algorithm that leverages isolated HBM as an unobservable cache to accelerate oblivious access to large host memory; (ii) a self-hosted architecture that offloads execution and memory control from the host to mitigate CPU-side leakage; and (iii) tailored algorithm-architecture co-designs that maximize resource efficiency. We implement a prototype BOLT on a Xilinx U55C FPGA. Evaluations show that BOLT achieves up to 279x and 480x speedups in initialization and query time, respectively, over state-of-the-art OMAPs, including an industry implementation from Facebook.
CaMeLs Can Use Computers Too: System-level Security for Computer Use Agents
AI agents are vulnerable to prompt injection attacks, where malicious content hijacks agent behavior to steal credentials or cause financial loss. The only known robust defense is architectural isolation that strictly separates trusted task planning from untrusted environment observations. However, applying this design to Computer Use Agents (CUAs) -- systems that automate tasks by viewing screens and executing actions -- presents a fundamental challenge: current agents require continuous observation of UI state to determine each action, conflicting with the isolation required for security. We resolve this tension by demonstrating that UI workflows, while dynamic, are structurally predictable. We introduce Single-Shot Planning for CUAs, where a trusted planner generates a complete execution graph with conditional branches before any observation of potentially malicious content, providing provable control flow integrity guarantees against arbitrary instruction injections. Although this architectural isolation successfully prevents instruction injections, we show that additional measures are needed to prevent Branch Steering attacks, which manipulate UI elements to trigger unintended valid paths within the plan. We evaluate our design on OSWorld, and retain up to 57% of the performance of frontier models while improving performance for smaller open-source models by up to 19%, demonstrating that rigorous security and utility can coexist in CUAs.
SAIL: SRAM-Accelerated LLM Inference System with Lookup-Table-based GEMV
Large Language Model (LLM) inference requires substantial computational resources, yet CPU-based inference remains essential for democratizing AI due to the widespread availability of CPUs compared to specialized accelerators. However, efficient LLM inference on CPUs faces two fundamental challenges: (1) existing CPU architectures struggle with low-precision arithmetic required by quantized models, where optimal bit precision varies across models and layers; and (2) the memory-bound nature of the token generation phase creates severe performance bottlenecks. To address these challenges, we propose SAIL (SRAM-Accelerated Inference of LLMs), a CPU-based inference solution that efficiently supports arbitrary bit precisions with minimal overhead. SAIL integrates three key innovations: First, we introduce Batched LUT-based General Matrix-Vector Multiplication (LUT-GEMV) with SRAM-based processing-in-memory, enabling high data reuse through lookup tables and reducing memory movement. Second, our Pattern-Aware LUT optimization identifies and exploits redundancy in input activation patterns, reducing computation cycles by 13.8\%. Third, we develop an in-memory type conversion algorithm that leverages PIM's parallelism for efficient de-/quantization operations, alleviating pressure on CPU's vector units. Our architecture requires only 2\% hardware overhead and a single new instruction, while maintaining dual functionality as both compute and storage units. Experimental evaluations using a modified gem5 simulator demonstrate that SAIL achieves up to 10.7x speedup and 19.9x higher tokens per dollar compared to ARM Neoverse-N1 CPU baselines, and up to 7.04x better cost efficiency than NVIDIA V100 GPUs, establishing a practical path for efficient CPU-based LLM inference.
Tilus: A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving
Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.
Can Large Language Models Understand Intermediate Representations in Compilers?
Intermediate Representations (IRs) play a critical role in compiler design and program analysis, yet their comprehension by Large Language Models (LLMs) remains underexplored. In this paper, we present an explorative empirical study evaluating the capabilities of six state-of-the-art LLMs: GPT-4, GPT-3, DeepSeek, Gemma 2, Llama 3, and Code Llama, in understanding IRs. Specifically, we assess model performance across four core tasks: control flow graph reconstruction, decompilation, code summarization, and execution reasoning. While LLMs exhibit competence in parsing IR syntax and identifying high-level structures, they consistently struggle with instruction-level reasoning, especially in control flow reasoning, loop handling, and dynamic execution. Common failure modes include misinterpreting branching instructions, omitting critical operations, and relying on heuristic reasoning rather than precise instruction-level logic. Our findings highlight the need for IR-specific enhancements in LLM design. We recommend fine-tuning on structured IR datasets and integrating control-flow-sensitive architectures to improve model effectiveness. All experimental data and source code are publicly available at
MELTing point: Mobile Evaluation of Language Transformers
Transformers have revolutionized the machine learning landscape, gradually making their way into everyday tasks and equipping our computers with "sparks of intelligence". However, their runtime requirements have prevented them from being broadly deployed on mobile. As personal devices become increasingly powerful and prompt privacy becomes an ever more pressing issue, we explore the current state of mobile execution of Large Language Models (LLMs). To achieve this, we have created our own automation infrastructure, MELT, which supports the headless execution and benchmarking of LLMs on device, supporting different models, devices and frameworks, including Android, iOS and Nvidia Jetson devices. We evaluate popular instruction fine-tuned LLMs and leverage different frameworks to measure their end-to-end and granular performance, tracing their memory and energy requirements along the way. Our analysis is the first systematic study of on-device LLM execution, quantifying performance, energy efficiency and accuracy across various state-of-the-art models and showcases the state of on-device intelligence in the era of hyperscale models. Results highlight the performance heterogeneity across targets and corroborates that LLM inference is largely memory-bound. Quantization drastically reduces memory requirements and renders execution viable, but at a non-negligible accuracy cost. Drawing from its energy footprint and thermal behavior, the continuous execution of LLMs remains elusive, as both factors negatively affect user experience. Last, our experience shows that the ecosystem is still in its infancy, and algorithmic as well as hardware breakthroughs can significantly shift the execution cost. We expect NPU acceleration, and framework-hardware co-design to be the biggest bet towards efficient standalone execution, with the alternative of offloading tailored towards edge deployments.
Valori: A Deterministic Memory Substrate for AI Systems
Modern AI systems rely on vector embeddings stored and searched using floating-point arithmetic. While effective for approximate similarity search, this design introduces fundamental non-determinism: identical models, inputs, and code can produce different memory states and retrieval results across hardware architectures (e.g., x86 vs. ARM). This prevents replayability and safe deployment, leading to silent data divergence that prevents post-hoc verification and compromises audit trails in regulated sectors. We present Valori, a deterministic AI memory substrate that replaces floating-point memory operations with fixed-point arithmetic (Q16.16) and models memory as a replayable state machine. Valori guarantees bit-identical memory states, snapshots, and search results across platforms. We demonstrate that non-determinism arises before indexing or retrieval and show how Valori enforces determinism at the memory boundary. Our results suggest that deterministic memory is a necessary primitive for trustworthy AI systems. The reference implementation is open-source and available at https://github.com/varshith-Git/Valori-Kernel (archived at https://zenodo.org/records/18022660).
CIFLEX: Contextual Instruction Flow for Sub-task Execution in Multi-Turn Interactions with a Single On-Device LLM
We present CIFLEX (Contextual Instruction Flow for Sub-task Execution), which is a novel execution system for efficient sub-task handling in multi-turn interactions with a single on-device large language model (LLM). As LLMs become increasingly capable, a single model is expected to handle diverse sub-tasks that more effectively and comprehensively support answering user requests. Naive approach reprocesses the entire conversation context when switching between main and sub-tasks (e.g., query rewriting, summarization), incurring significant computational overhead. CIFLEX mitigates this overhead by reusing the key-value (KV) cache from the main task and injecting only task-specific instructions into isolated side paths. After sub-task execution, the model rolls back to the main path via cached context, thereby avoiding redundant prefill computation. To support sub-task selection, we also develop a hierarchical classification strategy tailored for small-scale models, decomposing multi-choice decisions into binary ones. Experiments show that CIFLEX significantly reduces computational costs without degrading task performance, enabling scalable and efficient multi-task dialogue on-device.
Flexible Non-intrusive Dynamic Instrumentation for WebAssembly
A key strength of managed runtimes over hardware is the ability to gain detailed insight into the dynamic execution of programs with instrumentation. Analyses such as code coverage, execution frequency, tracing, and debugging, are all made easier in a virtual setting. As a portable, low-level bytecode, WebAssembly offers inexpensive in-process sandboxing with high performance. Yet to date, Wasm engines have not offered much insight into executing programs, supporting at best bytecode-level stepping and basic source maps, but no instrumentation capabilities. In this paper, we show the first non-intrusive dynamic instrumentation system for WebAssembly in the open-source Wizard Research Engine. Our innovative design offers a flexible, complete hierarchy of instrumentation primitives that support building high-level, complex analyses in terms of low-level, programmable probes. In contrast to emulation or machine code instrumentation, injecting probes at the bytecode level increases expressiveness and vastly simplifies the implementation by reusing the engine's JIT compiler, interpreter, and deoptimization mechanism rather than building new ones. Wizard supports both dynamic instrumentation insertion and removal while providing consistency guarantees, which is key to composing multiple analyses without interference. We detail a fully-featured implementation in a high-performance multi-tier Wasm engine, show novel optimizations specifically designed to minimize instrumentation overhead, and evaluate performance characteristics under load from various analyses. This design is well-suited for production engine adoption as probes can be implemented to have no impact on production performance when not in use.
MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation
Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.
An efficient probabilistic hardware architecture for diffusion-like models
The proliferation of probabilistic AI has promoted proposals for specialized stochastic computers. Despite promising efficiency gains, these proposals have failed to gain traction because they rely on fundamentally limited modeling techniques and exotic, unscalable hardware. In this work, we address these shortcomings by proposing an all-transistor probabilistic computer that implements powerful denoising models at the hardware level. A system-level analysis indicates that devices based on our architecture could achieve performance parity with GPUs on a simple image benchmark using approximately 10,000 times less energy.
PerfDojo: Automated ML Library Generation for Heterogeneous Architectures
The increasing complexity of machine learning models and the proliferation of diverse hardware architectures (CPUs, GPUs, accelerators) make achieving optimal performance a significant challenge. Heterogeneity in instruction sets, specialized kernel requirements for different data types and model features (e.g., sparsity, quantization), and architecture-specific optimizations complicate performance tuning. Manual optimization is resource-intensive, while existing automatic approaches often rely on complex hardware-specific heuristics and uninterpretable intermediate representations, hindering performance portability. We introduce PerfLLM, a novel automatic optimization methodology leveraging Large Language Models (LLMs) and Reinforcement Learning (RL). Central to this is PerfDojo, an environment framing optimization as an RL game using a human-readable, mathematically-inspired code representation that guarantees semantic validity through transformations. This allows effective optimization without prior hardware knowledge, facilitating both human analysis and RL agent training. We demonstrate PerfLLM's ability to achieve significant performance gains across diverse CPU (x86, Arm, RISC-V) and GPU architectures.
SAGE-HLS: Syntax-Aware AST-Guided LLM for High-Level Synthesis Code Generation
In today's rapidly evolving field of electronic design automation (EDA), the complexity of hardware designs is increasing, necessitating more sophisticated automation solutions. High-level synthesis (HLS), as a pivotal solution, automates hardware designs from high-level abstractions (e.g., C/C++). However, it faces significant challenges, particularly in design space exploration and optimization. While large language models (LLMs) have shown notable capabilities in code generation, their application to HLS has been limited due to the scarcity of (publicly) available HLS code datasets. Hence, research in this domain has primarily focused on techniques such as prompt engineering and retrieval-augmented generation (RAG). To overcome this limitation, this paper introduces SAGE-HLS, the first-of-its-kind fine-tuned LLM specifically for HLS code generation. Our method includes three key advancements: (i) We implement Verilog-to-C/C++ porting, converting verified and synthesizable Verilog codes into corresponding C, creating a dataset of 16.7K HLS codes; (ii) We implement a fine-tuning strategy, which is based on instruction prompting to code generation guided by abstract syntax tree (AST); (iii) We develop a semi-automated evaluation framework using VerilogEval to assess the functionality of the generated HLS code. Our experiments show that SAGE-HLS, fined-tuned on the QwenCoder (2.5) 7B model, achieves a near 100% success rate in code synthesizability and a 75% success rate in functional correctness.
Locking Machine Learning Models into Hardware
Modern Machine Learning models are expensive IP and business competitiveness often depends on keeping this IP confidential. This in turn restricts how these models are deployed -- for example it is unclear how to deploy a model on-device without inevitably leaking the underlying model. At the same time, confidential computing technologies such as Multi-Party Computation or Homomorphic encryption remain impractical for wide adoption. In this paper we take a different approach and investigate feasibility of ML-specific mechanisms that deter unauthorized model use by restricting the model to only be usable on specific hardware, making adoption on unauthorized hardware inconvenient. That way, even if IP is compromised, it cannot be trivially used without specialised hardware or major model adjustment. In a sense, we seek to enable cheap locking of machine learning models into specific hardware. We demonstrate that locking mechanisms are feasible by either targeting efficiency of model representations, such making models incompatible with quantisation, or tie the model's operation on specific characteristics of hardware, such as number of cycles for arithmetic operations. We demonstrate that locking comes with negligible work and latency overheads, while significantly restricting usability of the resultant model on unauthorized hardware.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
Victima: Drastically Increasing Address Translation Reach by Leveraging Underutilized Cache Resources
Address translation is a performance bottleneck in data-intensive workloads due to large datasets and irregular access patterns that lead to frequent high-latency page table walks (PTWs). PTWs can be reduced by using (i) large hardware TLBs or (ii) large software-managed TLBs. Unfortunately, both solutions have significant drawbacks: increased access latency, power and area (for hardware TLBs), and costly memory accesses, the need for large contiguous memory blocks, and complex OS modifications (for software-managed TLBs). We present Victima, a new software-transparent mechanism that drastically increases the translation reach of the processor by leveraging the underutilized resources of the cache hierarchy. The key idea of Victima is to repurpose L2 cache blocks to store clusters of TLB entries, thereby providing an additional low-latency and high-capacity component that backs up the last-level TLB and thus reduces PTWs. Victima has two main components. First, a PTW cost predictor (PTW-CP) identifies costly-to-translate addresses based on the frequency and cost of the PTWs they lead to. Second, a TLB-aware cache replacement policy prioritizes keeping TLB entries in the cache hierarchy by considering (i) the translation pressure (e.g., last-level TLB miss rate) and (ii) the reuse characteristics of the TLB entries. Our evaluation results show that in native (virtualized) execution environments Victima improves average end-to-end application performance by 7.4% (28.7%) over the baseline four-level radix-tree-based page table design and by 6.2% (20.1%) over a state-of-the-art software-managed TLB, across 11 diverse data-intensive workloads. Victima (i) is effective in both native and virtualized environments, (ii) is completely transparent to application and system software, and (iii) incurs very small area and power overheads on a modern high-end CPU.
Characterizing Soft-Error Resiliency in Arm's Ethos-U55 Embedded Machine Learning Accelerator
As Neural Processing Units (NPU) or accelerators are increasingly deployed in a variety of applications including safety critical applications such as autonomous vehicle, and medical imaging, it is critical to understand the fault-tolerance nature of the NPUs. We present a reliability study of Arm's Ethos-U55, an important industrial-scale NPU being utilised in embedded and IoT applications. We perform large scale RTL-level fault injections to characterize Ethos-U55 against the Automotive Safety Integrity Level D (ASIL-D) resiliency standard commonly used for safety-critical applications such as autonomous vehicles. We show that, under soft errors, all four configurations of the NPU fall short of the required level of resiliency for a variety of neural networks running on the NPU. We show that it is possible to meet the ASIL-D level resiliency without resorting to conventional strategies like Dual Core Lock Step (DCLS) that has an area overhead of 100%. We achieve so through selective protection, where hardware structures are selectively protected (e.g., duplicated, hardened) based on their sensitivity to soft errors and their silicon areas. To identify the optimal configuration that minimizes the area overhead while meeting the ASIL-D standard, the main challenge is the large search space associated with the time-consuming RTL simulation. To address this challenge, we present a statistical analysis tool that is validated against Arm silicon and that allows us to quickly navigate hundreds of billions of fault sites without exhaustive RTL fault injections. We show that by carefully duplicating a small fraction of the functional blocks and hardening the Flops in other blocks meets the ASIL-D safety standard while introducing an area overhead of only 38%.
SysLLMatic: Large Language Models are Software System Optimizers
Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.
ASIC-Agent: An Autonomous Multi-Agent System for ASIC Design with Benchmark Evaluation
Large Language Models (LLMs) have demonstrated remarkable capabilities in Register Transfer Level (RTL) design, enabling high-quality code generation from natural language descriptions. However, LLMs alone face significant limitations in real-world hardware design workflows, including the inability to execute code, lack of debugging capabilities, and absence of long-term memory. To address these challenges, we present ASIC-Agent, an autonomous system designed specifically for digital ASIC design tasks. ASIC-Agent enhances base LLMs with a multi-agent architecture incorporating specialized sub-agents for RTL generation, verification, OpenLane hardening, and Caravel chip integration, all operating within a comprehensive sandbox environment with access to essential hardware design tools. The system leverages a vector database containing documentation, API references, error knowledge, and curated insights from the open-source silicon community. To evaluate ASIC-Agent's performance, we introduce ASIC-Agent-Bench, the first benchmark specifically designed to assess agentic systems in hardware design tasks. We evaluate ASIC-Agent with various base LLMs, providing quantitative comparisons and qualitative insights into agent behavior across different design scenarios. Our results demonstrate that ASIC-Agent, when powered by Claude 4 Sonnet, successfully automates a broad range of ASIC design tasks spanning varying levels of complexity, showing the potential of significantly accelerating the ASIC design workflow.
Deploying Machine Learning Models to Ahead-of-Time Runtime on Edge Using MicroTVM
In the past few years, more and more AI applications have been applied to edge devices. However, models trained by data scientists with machine learning frameworks, such as PyTorch or TensorFlow, can not be seamlessly executed on edge. In this paper, we develop an end-to-end code generator parsing a pre-trained model to C source libraries for the backend using MicroTVM, a machine learning compiler framework extension addressing inference on bare metal devices. An analysis shows that specific compute-intensive operators can be easily offloaded to the dedicated accelerator with a Universal Modular Accelerator (UMA) interface, while others are processed in the CPU cores. By using the automatically generated ahead-of-time C runtime, we conduct a hand gesture recognition experiment on an ARM Cortex M4F core.
EmbedAgent: Benchmarking Large Language Models in Embedded System Development
Large Language Models (LLMs) have shown promise in various tasks, yet few benchmarks assess their capabilities in embedded system development.In this paper, we introduce EmbedAgent, a paradigm designed to simulate real-world roles in embedded system development, such as Embedded System Programmer, Architect, and Integrator. This paradigm enables LLMs to be tested in tasks that bridge the gap between digital and physical systems, allowing for a more comprehensive assessment of their capabilities. To evaluate LLMs on these tasks, we propose Embedbench, the first comprehensive benchmark for embedded system programming, circuit design, and cross-platform migration.Embedbench consists of 126 cases, covering 9 electronic components across 3 hardware platforms. Through extensive experiments on 10 mainstream LLMs, we uncover several key findings. Surprisingly, despite the simplicity of the cases, DeepSeek-R1 achieves only a 55.6% pass@1 rate when provided with schematic information, and 50.0% when tasked with generating the schematics itself. In the cross-platform migration tasks, LLMs show relatively strong performance with MicroPython on the Raspberry Pi Pico (with the top model achieving 73.8% pass@1), but perform poorly on ESP-IDF, where the best model reaches only 29.4% pass@1.Interestingly, we observe that general-purpose chat LLMs like DeepSeek-V3 often fail to utilize relevant pre-trained knowledge in this domain, while reasoning LLMs tend to overthink and overlook efficient knowledge during pretraining. Based on these insights, we propose two strategies: retrieval augmented generation and compiler feedback-to enhance LLM performance. These strategies result in significant improvements, with Deepseek-R1 reaching a 65.1% pass@1 with correct schematics, and 53.1% without. Additionally, the accuracy of the Arduino to ESP32 migration task improves from 21.4% to 27.8%.
PRO-V: An Efficient Program Generation Multi-Agent System for Automatic RTL Verification
LLM-assisted hardware verification is gaining substantial attention due to its potential to significantly reduce the cost and effort of crafting effective testbenches. It also serves as a critical enabler for LLM-aided end-to-end hardware language design. However, existing current LLMs often struggle with Register Transfer Level (RTL) code generation, resulting in testbenches that exhibit functional errors in Hardware Description Languages (HDL) logic. Motivated by the strong performance of LLMs in Python code generation under inference-time sampling strategies, and their promising capabilities as judge agents, we propose PRO-V a fully program generation multi-agent system for robust RTL verification. Pro-V incorporates an efficient best-of-n iterative sampling strategy to enhance the correctness of generated testbenches. Moreover, it introduces an LLM-as-a-judge aid validation framework featuring an automated prompt generation pipeline. By converting rule-based static analysis from the compiler into natural language through in-context learning, this pipeline enables LLMs to assist the compiler in determining whether verification failures stem from errors in the RTL design or the testbench. PRO-V attains a verification accuracy of 87.17% on golden RTL implementations and 76.28% on RTL mutants. Our code is open-sourced at https://github.com/stable-lab/Pro-V.
An Evaluation of LLMs Inference on Popular Single-board Computers
The growing demand for on-device large language model (LLM) inference is driving interest in deploying lightweight, cost-effective AI solutions on edge hardware. Single-board computers (SBCs) such as the Raspberry Pi and Orange Pi offer a promising platform for localized, privacy-preserving inference-but remain underexplored in the context of LLM workloads. In this work, we benchmark the performance of 25 quantized open-source LLMs across three SBCs-Raspberry Pi 4, Raspberry Pi 5, and Orange Pi 5 Pro-using two inference runtimes: Ollama and Llamafile. We evaluate generation throughput, memory usage, and power consumption under varying CPU configurations, using multiple prompt types to simulate realistic workloads. Our results show that SBCs can reliably support models up to 1.5B parameters, with Llamafile achieving up to 4x higher throughput and 30-40% lower power usage than Ollama. We identify architecture-specific bottlenecks, highlight runtime-level trade-offs, and provide practical deployment recommendations. This study offers the first broad evaluation of LLM inference on SBCs, bridging the gap between high-performance language models and affordable edge computing.
SkiffOS: Minimal Cross-compiled Linux for Embedded Containers
Embedded Linux processors are increasingly used for real-time computing tasks such as robotics and Internet of Things (IoT). These applications require robust and reproducible behavior from the host OS, commonly achieved through immutable firmware stored in read-only memory. SkiffOS addresses these requirements with a minimal cross-compiled GNU/Linux system optimized for hosting containerized distributions and applications, and a configuration layering system for the Buildroot embedded cross-compiler tool which automatically re-targets system configurations to any platform or device. This approach cleanly separates the hardware support from the applications. The host system and containers are independently upgraded and backed-up over-the-air (OTA).
AccLLM: Accelerating Long-Context LLM Inference Via Algorithm-Hardware Co-Design
Recently, large language models (LLMs) have achieved huge success in the natural language processing (NLP) field, driving a growing demand to extend their deployment from the cloud to edge devices. However, deploying LLMs on resource-constrained edge devices poses significant challenges, including (1) intensive computations and huge model sizes, (2) great memory and bandwidth demands introduced by the autoregressive generation process, and (3) limited scalability for handling long sequences. To address these challenges, we propose AccLLM, a comprehensive acceleration framework that enables efficient and fast long-context LLM inference through algorithm and hardware co-design. At the algorithmic level, we integrate (1) pruning, (2) {\Lambda}-shaped attention, and (3) an innovative W2A8KV4 (2-bit weights, 8-bit activations, and 4-bit KV cache) quantization scheme, thus effectively reducing memory and bandwidth requirements while facilitating LLMs' long-sequence generation. At the hardware level, we design a dedicated FPGA-based accelerator with a reconfigurable computing engine to effectively and flexibly accommodate diverse operations arising from our compression algorithm, thereby fully translating the algorithmic innovations into tangible hardware efficiency. We validate AccLLM on the Xilinx Alveo U280 FPGA, demonstrating a 4.07x energy efficiency and a 2.98x throughput compared to the state-of-the-art work FlightLLM.
A Survey on Hardware Accelerators for Large Language Models
Large Language Models (LLMs) have emerged as powerful tools for natural language processing tasks, revolutionizing the field with their ability to understand and generate human-like text. As the demand for more sophisticated LLMs continues to grow, there is a pressing need to address the computational challenges associated with their scale and complexity. This paper presents a comprehensive survey on hardware accelerators designed to enhance the performance and energy efficiency of Large Language Models. By examining a diverse range of accelerators, including GPUs, FPGAs, and custom-designed architectures, we explore the landscape of hardware solutions tailored to meet the unique computational demands of LLMs. The survey encompasses an in-depth analysis of architecture, performance metrics, and energy efficiency considerations, providing valuable insights for researchers, engineers, and decision-makers aiming to optimize the deployment of LLMs in real-world applications.
Synthesis of Sound and Precise Leakage Contracts for Open-Source RISC-V Processors
Leakage contracts have been proposed as a new security abstraction at the instruction set architecture level. Leakage contracts aim to capture the information that processors may leak via microarchitectural side channels. Recently, the first tools have emerged to verify whether a processor satisfies a given contract. However, coming up with a contract that is both sound and precise for a given processor is challenging, time-consuming, and error-prone, as it requires in-depth knowledge of the timing side channels introduced by microarchitectural optimizations. In this paper, we address this challenge by proposing LeaSyn, the first tool for automatically synthesizing leakage contracts that are both sound and precise for processor designs at register-transfer level. Starting from a user-provided contract template that captures the space of possible contracts, LeaSyn automatically constructs a contract, alternating between contract synthesis, which ensures precision based on an empirical characterization of the processor's leaks, and contract verification, which ensures soundness. Using LeaSyn, we automatically synthesize contracts for six open-source RISC-V CPUs for a variety of contract templates. Our experiments indicate that LeaSyn's contracts are sound and more precise (i.e., represent the actual leaks in the target processor more faithfully) than contracts constructed by existing approaches.
Efficient Inference of Vision Instruction-Following Models with Elastic Cache
In the field of instruction-following large vision-language models (LVLMs), the efficient deployment of these models faces challenges, notably due to the high memory demands of their key-value (KV) caches. Conventional cache management strategies for LLMs focus on cache eviction, which often fails to address the specific needs of multimodal instruction-following models. Recognizing this gap, in this paper, we introduce Elastic Cache, a novel approach that benefits from applying distinct acceleration methods for instruction encoding and output generation stages. We investigate the metrics of importance in different stages and propose an importance-driven cache merging strategy to prune redundancy caches. Instead of discarding less important caches, our strategy identifies important key/value vectors as anchor points. Surrounding less important caches are then merged with these anchors, enhancing the preservation of contextual information in the KV caches while yielding an arbitrary acceleration ratio. For instruction encoding, we utilize the frequency to evaluate the importance of caches. Regarding output generation, we prioritize tokens based on their distance with an offset, by which both the initial and most recent tokens are retained. Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation across various tasks. Code is available at https://github.com/liuzuyan/ElasticCache
SpecMamba: Accelerating Mamba Inference on FPGA with Speculative Decoding
The growing demand for efficient long-sequence modeling on edge devices has propelled widespread adoption of State Space Models (SSMs) like Mamba, due to their superior computational efficiency and scalability. As its autoregressive generation process remains memory-bound, speculative decoding has been proposed that incorporates draft model generation and target model verification. However, directly applying speculative decoding to SSMs faces three key challenges: (1) hidden state backtracking difficulties, (2) tree-based parallel verification incompatibility, and (3) hardware workload mismatch. To address these challenges, we propose SpecMamba, the first FPGA-based accelerator for Mamba with speculative decoding, which features system, algorithm, and hardware co-design. At the system level, we present a memory-aware hybrid backtracking strategy to coordinate both models. At the algorithm level, we propose first-in-first-out (FIFO)-based tree verification with tiling to minimize memory access. At the hardware level, we customize a dataflow that computes linear layers in parallel and SSM layers in series to enable maximal overlapping. Implemented on AMD FPGA platforms (VHK158 and VCK190), SpecMamba achieves a 2.27x speedup over GPU baselines and a 2.85x improvement compared to prior FPGA solutions, while demonstrating 5.41x and 1.26x higher energy efficiency, respectively.
ThunderKittens: Simple, Fast, and Adorable AI Kernels
The challenge of mapping AI architectures to GPU hardware is creating a critical bottleneck in AI progress. Despite substantial efforts, hand-written custom kernels fail to meet their theoretical performance thresholds, even on well-established operations like linear attention. The diverse hardware capabilities of GPUs might suggest that we need a wide variety of techniques to achieve high performance. However, our work explores whether a small number of key abstractions can drastically simplify the process. We present ThunderKittens (TK), a framework for writing performant AI kernels while remaining easy to use and maintain. Our abstractions map to the three levels of the GPU hierarchy: (1) at the warp-level, we provide 16x16 matrix tiles as basic data structures and PyTorch-like parallel compute operations over tiles, (2) at the thread-block level, we provide a template for overlapping asynchronous operations across parallel warps, and (3) at the grid-level, we provide support to help hide the block launch and tear-down, and memory costs. We show the value of TK by providing kernels that match or outperform prior kernels for a range of AI operations. We match CuBLAS and FlashAttention-3 on GEMM and attention inference performance and outperform the strongest baselines by 10-40% on attention backwards, 8times on state space models, and 14times on linear attention.
IsolateGPT: An Execution Isolation Architecture for LLM-Based Agentic Systems
Large language models (LLMs) extended as systems, such as ChatGPT, have begun supporting third-party applications. These LLM apps leverage the de facto natural language-based automated execution paradigm of LLMs: that is, apps and their interactions are defined in natural language, provided access to user data, and allowed to freely interact with each other and the system. These LLM app ecosystems resemble the settings of earlier computing platforms, where there was insufficient isolation between apps and the system. Because third-party apps may not be trustworthy, and exacerbated by the imprecision of natural language interfaces, the current designs pose security and privacy risks for users. In this paper, we evaluate whether these issues can be addressed through execution isolation and what that isolation might look like in the context of LLM-based systems, where there are arbitrary natural language-based interactions between system components, between LLM and apps, and between apps. To that end, we propose IsolateGPT, a design architecture that demonstrates the feasibility of execution isolation and provides a blueprint for implementing isolation, in LLM-based systems. We evaluate IsolateGPT against a number of attacks and demonstrate that it protects against many security, privacy, and safety issues that exist in non-isolated LLM-based systems, without any loss of functionality. The performance overhead incurred by IsolateGPT to improve security is under 30% for three-quarters of tested queries.
From CISC to RISC: language-model guided assembly transpilation
The transition from x86 to ARM architecture is becoming increasingly common across various domains, primarily driven by ARM's energy efficiency and improved performance across traditional sectors. However, this ISA shift poses significant challenges, mainly due to the extensive legacy ecosystem of x86 software and lack of portability across proprietary ecosystems and software stacks. This paper introduces CRT, a lightweight LLM-based transpiler that automatically converts x86 assembly to ARM assembly. Our approach bridges the fundamental architectural gap between x86's CISC-based and ARM's RISC-based computing paradigms while preserving program semantics and optimizing performance. We evaluate CRT on diverse real-world applications, achieving 79.25% translation accuracy from x86 to ARMv5 on our comprehensive test suite, and an 88.68% accuracy from x86 to RISC-V. In practical deployments on Apple M2 hardware (ARMv8), our transpiled code achieves 1.73times speedup compared to Apple's Rosetta 2 virtualization engine, while delivering 2.41times memory efficiency and 1.47times better energy consumption. Through testing and analysis, we show that CRT successfully navigates the CISC/RISC divide and generates correctly executable RISC code despite machine ``language'' barriers. We release our code, models, training datasets, and benchmarks at: https://ahmedheakl.github.io/asm2asm/.
Modeling Performance of Data Collection Systems for High-Energy Physics
Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.
Toward General Instruction-Following Alignment for Retrieval-Augmented Generation
Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems. We start by manually crafting a minimal set of atomic instructions (<100) and developing combination rules to synthesize and verify complex instructions for a seed set. We then use supervised models for instruction rewriting while simultaneously generating code to automate the verification of instruction quality via a Python executor. Finally, we integrate these instructions with extensive RAG and general data samples, scaling up to a high-quality VIF-RAG-QA dataset (>100k) through automated processes. To further bridge the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and four knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks. Using FollowRAG and eight widely-used IF and foundational abilities benchmarks for LLMs, we demonstrate that VIF-RAG markedly enhances LLM performance across a broad range of general instruction constraints while effectively leveraging its capabilities in RAG scenarios. Further analysis offers practical insights for achieving IF alignment in RAG systems. Our code and datasets are released at https://FollowRAG.github.io.
Hardware Phi-1.5B: A Large Language Model Encodes Hardware Domain Specific Knowledge
In the rapidly evolving semiconductor industry, where research, design, verification, and manufacturing are intricately linked, the potential of Large Language Models to revolutionize hardware design and security verification is immense. The primary challenge, however, lies in the complexity of hardware specific issues that are not adequately addressed by the natural language or software code knowledge typically acquired during the pretraining stage. Additionally, the scarcity of datasets specific to the hardware domain poses a significant hurdle in developing a foundational model. Addressing these challenges, this paper introduces Hardware Phi 1.5B, an innovative large language model specifically tailored for the hardware domain of the semiconductor industry. We have developed a specialized, tiered dataset comprising small, medium, and large subsets and focused our efforts on pretraining using the medium dataset. This approach harnesses the compact yet efficient architecture of the Phi 1.5B model. The creation of this first pretrained, hardware domain specific large language model marks a significant advancement, offering improved performance in hardware design and verification tasks and illustrating a promising path forward for AI applications in the semiconductor sector.
Analyzing Modern NVIDIA GPU cores
GPUs are the most popular platform for accelerating HPC workloads, such as artificial intelligence and science simulations. However, most microarchitectural research in academia relies on GPU core pipeline designs based on architectures that are more than 15 years old. This paper reverse engineers modern NVIDIA GPU cores, unveiling many key aspects of its design and explaining how GPUs leverage hardware-compiler techniques where the compiler guides hardware during execution. In particular, it reveals how the issue logic works including the policy of the issue scheduler, the structure of the register file and its associated cache, and multiple features of the memory pipeline. Moreover, it analyses how a simple instruction prefetcher based on a stream buffer fits well with modern NVIDIA GPUs and is likely to be used. Furthermore, we investigate the impact of the register file cache and the number of register file read ports on both simulation accuracy and performance. By modeling all these new discovered microarchitectural details, we achieve 18.24% lower mean absolute percentage error (MAPE) in execution cycles than previous state-of-the-art simulators, resulting in an average of 13.98% MAPE with respect to real hardware (NVIDIA RTX A6000). Also, we demonstrate that this new model stands for other NVIDIA architectures, such as Turing. Finally, we show that the software-based dependence management mechanism included in modern NVIDIA GPUs outperforms a hardware mechanism based on scoreboards in terms of performance and area.
CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
Large Language Models (LLMs) have demonstrated strong capabilities in general-purpose code generation. However, generating the code which is deeply hardware-specific, architecture-aware, and performance-critical, especially for massively parallel GPUs, remains a complex challenge. In this work, we explore the use of LLMs for the automated generation and optimization of CUDA programs, with the goal of producing high-performance GPU kernels that fully exploit the underlying hardware. To address this challenge, we propose a novel framework called Feature Search and Reinforcement (FSR). FSR jointly optimizes compilation and functional correctness, as well as the runtime performance, which are validated through extensive and diverse test cases, and measured by actual kernel execution latency on the target GPU, respectively. This approach enables LLMs not only to generate syntactically and semantically correct CUDA code but also to iteratively refine it for efficiency, tailored to the characteristics of the GPU architecture. We evaluate FSR on representative CUDA kernels, covering AI workloads and computational intensive algorithms. Our results show that LLMs augmented with FSR consistently guarantee correctness rates. Meanwhile, the automatically generated kernels can outperform general human-written code by a factor of up to 179times in execution speeds. These findings highlight the potential of combining LLMs with performance reinforcement to automate GPU programming for hardware-specific, architecture-sensitive, and performance-critical applications.
The Pitfalls of KV Cache Compression
KV cache compression promises increased throughput and efficiency with negligible loss in performance. While the gains in throughput are indisputable and recent literature has indeed shown minimal degradation on particular benchmarks, in general the consequences of compression in realistic scenarios such as multi-instruction prompting have been insufficiently studied. In this paper, we identify several pitfalls practitioners should be aware of when deploying KV cache compressed LLMs. Importantly, we show that certain instructions degrade much more rapidly with compression, effectively causing them to be completely ignored by the LLM. As a practical example of that, we highlight system prompt leakage as a case study, empirically showing the impact of compression on leakage and general instruction following. We show several factors that play a role in prompt leakage: compression method, instruction order, and KV eviction bias. We then propose simple changes to KV cache eviction policies that can reduce the impact of these factors and improve the overall performance in multi-instruction tasks.
Side-Channel Extraction of Dataflow AI Accelerator Hardware Parameters
Dataflow neural network accelerators efficiently process AI tasks on FPGAs, with deployment simplified by ready-to-use frameworks and pre-trained models. However, this convenience makes them vulnerable to malicious actors seeking to reverse engineer valuable Intellectual Property (IP) through Side-Channel Attacks (SCA). This paper proposes a methodology to recover the hardware configuration of dataflow accelerators generated with the FINN framework. Through unsupervised dimensionality reduction, we reduce the computational overhead compared to the state-of-the-art, enabling lightweight classifiers to recover both folding and quantization parameters. We demonstrate an attack phase requiring only 337 ms to recover the hardware parameters with an accuracy of more than 95% and 421 ms to fully recover these parameters with an averaging of 4 traces for a FINN-based accelerator running a CNN, both using a random forest classifier on side-channel traces, even with the accelerator dataflow fully loaded. This approach offers a more realistic attack scenario than existing methods, and compared to SoA attacks based on tsfresh, our method requires 940x and 110x less time for preparation and attack phases, respectively, and gives better results even without averaging traces.
MoKA: Mixture of Kronecker Adapters
Parameter-efficient fine-tuning (PEFT) is essential for reducing the computational overhead of large language models (LLMs). Low-rank family adapters are commonly used to control the parameter size efficiently while maintaining the generative power of LLMs. However, their limited expressiveness due to the rank constraint often restricts their performance on complex tasks. We propose Mixture of Kronecker Adapters (MoKA), a new generation of Kronecker adapters that addresses this limitation by modeling weight updates as a mixture of Kronecker products. Our proposed adapter leverages a gating mechanism that measures the importance of each Kronecker factor, enabling more expressive adaptation. Moreover, MoKA enables a rank flexibility that provides a better trade-off between parameter efficiency and accuracy. To ensure hardware efficiency, we reformulate Kronecker computations using standard matrix operations, allowing seamless deployment on GPU-optimized hardware. We conduct extensive experiments on instruction-tuning and commonsense reasoning tasks using low-bit quantized versions of LLaMA2-7B and LLaMA3-8B models. MoKA not only outperforms PEFT baselines, but also reduces the number of trainable parameters up to 27x, achieving state-of-the-art trade-offs between performance and parameter efficiency.
PipeLLM: Fast and Confidential Large Language Model Services with Speculative Pipelined Encryption
Confidential computing on GPUs, like NVIDIA H100, mitigates the security risks of outsourced Large Language Models (LLMs) by implementing strong isolation and data encryption. Nonetheless, this encryption incurs a significant performance overhead, reaching up to 52.8 percent and 88.2 percent throughput drop when serving OPT-30B and OPT-66B, respectively. To address this challenge, we introduce PipeLLM, a user-transparent runtime system. PipeLLM removes the overhead by overlapping the encryption and GPU computation through pipelining - an idea inspired by the CPU instruction pipelining - thereby effectively concealing the latency increase caused by encryption. The primary technical challenge is that, unlike CPUs, the encryption module lacks prior knowledge of the specific data needing encryption until it is requested by the GPUs. To this end, we propose speculative pipelined encryption to predict the data requiring encryption by analyzing the serving patterns of LLMs. Further, we have developed an efficient, low-cost pipeline relinquishing approach for instances of incorrect predictions. Our experiments on NVIDIA H100 GPU show that compared with vanilla systems without confidential computing (e.g., vLLM, PEFT, and FlexGen), PipeLLM incurs modest overhead (less than 19.6 percent in throughput) across various LLM sizes, from 13B to 175B.
HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning
For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings. Code is available at https://github.com/HayeonLee/HELP.
NotSoTiny: A Large, Living Benchmark for RTL Code Generation
LLMs have shown early promise in generating RTL code, yet evaluating their capabilities in realistic setups remains a challenge. So far, RTL benchmarks have been limited in scale, skewed toward trivial designs, offering minimal verification rigor, and remaining vulnerable to data contamination. To overcome these limitations and to push the field forward, this paper introduces NotSoTiny, a benchmark that assesses LLM on the generation of structurally rich and context-aware RTL. Built from hundreds of actual hardware designs produced by the Tiny Tapeout community, our automated pipeline removes duplicates, verifies correctness and periodically incorporates new designs to mitigate contamination, matching Tiny Tapeout release schedule. Evaluation results show that NotSoTiny tasks are more challenging than prior benchmarks, emphasizing its effectiveness in overcoming current limitations of LLMs applied to hardware design, and in guiding the improvement of such promising technology.
HADES: Hardware Accelerated Decoding for Efficient Speculation in Large Language Models
Large Language Models (LLMs) have revolutionized natural language processing by understanding and generating human-like text. However, the increasing demand for more sophisticated LLMs presents significant computational challenges due to their scale and complexity. This paper introduces Hardware Accelerated Decoding (HADES), a novel approach to enhance the performance and energy efficiency of LLMs. We address the design of an LLM accelerator with hardware-level speculative decoding support, a concept not previously explored in existing literature. Our work demonstrates how speculative decoding can significantly improve the efficiency of LLM operations, paving the way for more advanced and practical applications of these models.
SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices
As large language models gain widespread adoption, running them efficiently becomes crucial. Recent works on LLM inference use speculative decoding to achieve extreme speedups. However, most of these works implicitly design their algorithms for high-end datacenter hardware. In this work, we ask the opposite question: how fast can we run LLMs on consumer machines? Consumer GPUs can no longer fit the largest available models (50B+ parameters) and must offload them to RAM or SSD. When running with offloaded parameters, the inference engine can process batches of hundreds or thousands of tokens at the same time as just one token, making it a natural fit for speculative decoding. We propose SpecExec (Speculative Execution), a simple parallel decoding method that can generate up to 20 tokens per target model iteration for popular LLM families. It utilizes the high spikiness of the token probabilities distribution in modern LLMs and a high degree of alignment between model output probabilities. SpecExec takes the most probable tokens continuation from the draft model to build a "cache" tree for the target model, which then gets validated in a single pass. Using SpecExec, we demonstrate inference of 50B+ parameter LLMs on consumer GPUs with RAM offloading at 4-6 tokens per second with 4-bit quantization or 2-3 tokens per second with 16-bit weights.
Accelerator-aware Neural Network Design using AutoML
While neural network hardware accelerators provide a substantial amount of raw compute throughput, the models deployed on them must be co-designed for the underlying hardware architecture to obtain the optimal system performance. We present a class of computer vision models designed using hardware-aware neural architecture search and customized to run on the Edge TPU, Google's neural network hardware accelerator for low-power, edge devices. For the Edge TPU in Coral devices, these models enable real-time image classification performance while achieving accuracy typically seen only with larger, compute-heavy models running in data centers. On Pixel 4's Edge TPU, these models improve the accuracy-latency tradeoff over existing SoTA mobile models.
AscendKernelGen: A Systematic Study of LLM-Based Kernel Generation for Neural Processing Units
To meet the ever-increasing demand for computational efficiency, Neural Processing Units (NPUs) have become critical in modern AI infrastructure. However, unlocking their full potential requires developing high-performance compute kernels using vendor-specific Domain-Specific Languages (DSLs), a task that demands deep hardware expertise and is labor-intensive. While Large Language Models (LLMs) have shown promise in general code generation, they struggle with the strict constraints and scarcity of training data in the NPU domain. Our preliminary study reveals that state-of-the-art general-purpose LLMs fail to generate functional complex kernels for Ascend NPUs, yielding a near-zero success rate. To address these challenges, we propose AscendKernelGen, a generation-evaluation integrated framework for NPU kernel development. We introduce Ascend-CoT, a high-quality dataset incorporating chain-of-thought reasoning derived from real-world kernel implementations, and KernelGen-LM, a domain-adaptive model trained via supervised fine-tuning and reinforcement learning with execution feedback. Furthermore, we design NPUKernelBench, a comprehensive benchmark for assessing compilation, correctness, and performance across varying complexity levels. Experimental results demonstrate that our approach significantly bridges the gap between general LLMs and hardware-specific coding. Specifically, the compilation success rate on complex Level-2 kernels improves from 0% to 95.5% (Pass@10), while functional correctness achieves 64.3% compared to the baseline's complete failure. These results highlight the critical role of domain-specific reasoning and rigorous evaluation in automating accelerator-aware code generation.
Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks
The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.
Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary
We consider online scheduling on unrelated (heterogeneous) machines in a speed-oblivious setting, where an algorithm is unaware of the exact job-dependent processing speeds. We show strong impossibility results for clairvoyant and non-clairvoyant algorithms and overcome them in models inspired by practical settings: (i) we provide competitive learning-augmented algorithms, assuming that (possibly erroneous) predictions on the speeds are given, and (ii) we provide competitive algorithms for the speed-ordered model, where a single global order of machines according to their unknown job-dependent speeds is known. We prove strong theoretical guarantees and evaluate our findings on a representative heterogeneous multi-core processor. These seem to be the first empirical results for scheduling algorithms with predictions that are evaluated in a non-synthetic hardware environment.
Insights from Verification: Training a Verilog Generation LLM with Reinforcement Learning with Testbench Feedback
Large language models (LLMs) have shown strong performance in Verilog generation from natural language description. However, ensuring the functional correctness of the generated code remains a significant challenge. This paper introduces a method that integrates verification insights from testbench into the training of Verilog generation LLMs, aligning the training with the fundamental goal of hardware design: functional correctness. The main obstacle in using LLMs for Verilog code generation is the lack of sufficient functional verification data, particularly testbenches paired with design specifications and code. To address this problem, we introduce an automatic testbench generation pipeline that decomposes the process and uses feedback from the Verilog compiler simulator (VCS) to reduce hallucination and ensure correctness. We then use the testbench to evaluate the generated codes and collect them for further training, where verification insights are introduced. Our method applies reinforcement learning (RL), specifically direct preference optimization (DPO), to align Verilog code generation with functional correctness by training preference pairs based on testbench outcomes. In evaluations on VerilogEval-Machine, VerilogEval-Human, RTLLM v1.1, RTLLM v2, and VerilogEval v2, our approach consistently outperforms state-of-the-art baselines in generating functionally correct Verilog code. We open source all training code, data, and models at https://anonymous.4open.science/r/VeriPrefer-E88B.
VeriThoughts: Enabling Automated Verilog Code Generation using Reasoning and Formal Verification
This paper introduces VeriThoughts, a novel dataset designed for reasoning-based Verilog code generation. We establish a new benchmark framework grounded in formal verification methods to evaluate the quality and correctness of generated hardware descriptions. Additionally, we present a suite of specialized small-scale models optimized specifically for Verilog generation. Our work addresses the growing need for automated hardware design tools that can produce verifiably correct implementations from high-level specifications, potentially accelerating the hardware development process while maintaining rigorous correctness guarantees. Our code and data are available at https://github.com/wilyub/VeriThoughts{this URL}.
LLM4SecHW: Leveraging Domain Specific Large Language Model for Hardware Debugging
This paper presents LLM4SecHW, a novel framework for hardware debugging that leverages domain specific Large Language Model (LLM). Despite the success of LLMs in automating various software development tasks, their application in the hardware security domain has been limited due to the constraints of commercial LLMs and the scarcity of domain specific data. To address these challenges, we propose a unique approach to compile a dataset of open source hardware design defects and their remediation steps, utilizing version control data. This dataset provides a substantial foundation for training machine learning models for hardware. LLM4SecHW employs fine tuning of medium sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs. This pioneering approach offers a reference workflow for the application of fine tuning domain specific LLMs in other research areas. We evaluate the performance of our proposed system on various open source hardware designs, demonstrating its efficacy in accurately identifying and correcting defects. Our work brings a new perspective on automating the quality control process in hardware design.
Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs
The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit
MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints
Mixture of Experts (MoE) LLMs, characterized by their sparse activation patterns, offer a promising approach to scaling language models while avoiding proportionally increasing the inference cost. However, their large parameter sizes present deployment challenges in resource-constrained environments with limited GPU memory capacity, as GPU memory is often insufficient to accommodate the full set of model weights. Consequently, typical deployments rely on CPU-GPU hybrid execution: the GPU handles compute-intensive GEMM operations, while the CPU processes the relatively lightweight attention mechanism. This setup introduces a key challenge: how to effectively optimize resource utilization across CPU and GPU? Prior work has designed system optimizations based on performance models with limited scope. Specifically, such models do not capture the complex interactions between hardware properties and system execution mechanisms. Therefore, previous approaches neither identify nor achieve the hardware limit. This paper presents MoE-Lens, a high-throughput MoE LLM inference system designed through holistic performance modeling for resource-constrained environments. Our performance model thoroughly analyzes various fundamental system components, including CPU memory capacity, GPU compute power, and workload characteristics, to understand the theoretical performance upper bound of MoE inference. Furthermore, it captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput. Informed by our performance model, MoE-Lens introduces an inference system approaching hardware limits. Evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x), with our theoretical model predicting performance with an average 94% accuracy.
ML-driven Hardware Cost Model for MLIR
During early optimization passes, compilers must make predictions for machine-dependent characteristics such as execution unit utilization, number of register spills, latency, throughput etc. to generate better code. Often a hand-written static/analytical hardware cost model is built into the compiler. However, the need for more sophisticated and varied predictions has become more pronounced with the development of deep learning compilers which need to optimize dataflow graphs. Such compilers usually employ a much higher level MLIR form as an IR representation before lowering to traditional LLVM-IR. A static/analytical cost model in such a scenario is cumbersome and error prone as the opcodes represent very high level algebraic/arithmetic operations. Hence, we develop a machine learning-based cost model for high-level MLIR which can predict different target variables of interest such as CPU/GPU/xPU utilization, instructions executed, register usage etc. By considering the incoming MLIR as a text input a la NLP models we can apply well-known techniques from modern NLP research to help predict hardware characteristics more accurately. We expect such precise ML-driven hardware cost models to guide our deep learning compiler in graph level optimizations around operator fusion, local memory allocation, kernel scheduling etc. as well as in many kernel-level optimizations such as loop interchange, LICM and unroll. We report early work-in -progress results of developing such models on high-level MLIR representing dataflow graphs emitted by Pytorch/Tensorflow-like frameworks as well as lower-level dialects like affine. We show that these models can provide reasonably good estimates with low error bounds for various hardware characteristics of interest and can be a go-to mechanism for hardware cost modelling in the future.
Profiling Neural Blocks and Design Spaces for Mobile Neural Architecture Search
Neural architecture search automates neural network design and has achieved state-of-the-art results in many deep learning applications. While recent literature has focused on designing networks to maximize accuracy, little work has been conducted to understand the compatibility of architecture design spaces to varying hardware. In this paper, we analyze the neural blocks used to build Once-for-All (MobileNetV3), ProxylessNAS and ResNet families, in order to understand their predictive power and inference latency on various devices, including Huawei Kirin 9000 NPU, RTX 2080 Ti, AMD Threadripper 2990WX, and Samsung Note10. We introduce a methodology to quantify the friendliness of neural blocks to hardware and the impact of their placement in a macro network on overall network performance via only end-to-end measurements. Based on extensive profiling results, we derive design insights and apply them to hardware-specific search space reduction. We show that searching in the reduced search space generates better accuracy-latency Pareto frontiers than searching in the original search spaces, customizing architecture search according to the hardware. Moreover, insights derived from measurements lead to notably higher ImageNet top-1 scores on all search spaces investigated.
Large-scale image analysis using docker sandboxing
With the advent of specialized hardware such as Graphics Processing Units (GPUs), large scale image localization, classification and retrieval have seen increased prevalence. Designing scalable software architecture that co-evolves with such specialized hardware is a challenge in the commercial setting. In this paper, we describe one such architecture (Cortexica) that leverages scalability of GPUs and sandboxing offered by docker containers. This allows for the flexibility of mixing different computer architectures as well as computational algorithms with the security of a trusted environment. We illustrate the utility of this framework in a commercial setting i.e., searching for multiple products in an image by combining image localisation and retrieval.
Free and Fair Hardware: A Pathway to Copyright Infringement-Free Verilog Generation using LLMs
Limitations in Large Language Model (LLM) capabilities for hardware design tasks, such as generating functional Verilog codes, have motivated various fine-tuning optimizations utilizing curated hardware datasets from open-source repositories. However, these datasets remain limited in size and contain minimal checks on licensing for reuse, resulting in potential copyright violations by fine-tuned LLMs. Therefore, we propose an evaluation benchmark to estimate the risk of Verilog-trained LLMs to generate copyright-protected codes. To minimize this risk, we present an open-source Verilog dataset, FreeSet, containing over 220k files, along with the automated dataset curation framework utilized to provide additional guarantees of fair-use Verilog data. We then execute an LLM fine-tuning framework consisting of continual pre-training, resulting in a fine-tuned Llama model for Verilog, FreeV. Our results indicate that FreeV demonstrates the smallest risk of copyright-infringement among prior works, with only a 3% violation rate. Furthermore, experimental results demonstrate improvements in Verilog generation functionality over its baseline model, improving VerilogEval pass@10 rates by over 10%.
LLMPirate: LLMs for Black-box Hardware IP Piracy
The rapid advancement of large language models (LLMs) has enabled the ability to effectively analyze and generate code nearly instantaneously, resulting in their widespread adoption in software development. Following this advancement, researchers and companies have begun integrating LLMs across the hardware design and verification process. However, these highly potent LLMs can also induce new attack scenarios upon security vulnerabilities across the hardware development process. One such attack vector that has not been explored is intellectual property (IP) piracy. Given that this attack can manifest as rewriting hardware designs to evade piracy detection, it is essential to thoroughly evaluate LLM capabilities in performing this task and assess the mitigation abilities of current IP piracy detection tools. Therefore, in this work, we propose LLMPirate, the first LLM-based technique able to generate pirated variations of circuit designs that successfully evade detection across multiple state-of-the-art piracy detection tools. We devise three solutions to overcome challenges related to integration of LLMs for hardware circuit designs, scalability to large circuits, and effectiveness, resulting in an end-to-end automated, efficient, and practical formulation. We perform an extensive experimental evaluation of LLMPirate using eight LLMs of varying sizes and capabilities and assess their performance in pirating various circuit designs against four state-of-the-art, widely-used piracy detection tools. Our experiments demonstrate that LLMPirate is able to consistently evade detection on 100% of tested circuits across every detection tool. Additionally, we showcase the ramifications of LLMPirate using case studies on IBEX and MOR1KX processors and a GPS module, that we successfully pirate. We envision that our work motivates and fosters the development of better IP piracy detection tools.
RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our Open-Source Dataset and Lightweight Solution
The automatic generation of RTL code (e.g., Verilog) using natural language instructions and large language models (LLMs) has attracted significant research interest recently. However, most existing approaches heavily rely on commercial LLMs such as ChatGPT, while open-source LLMs tailored for this specific design generation task exhibit notably inferior performance. The absence of high-quality open-source solutions restricts the flexibility and data privacy of this emerging technique. In this study, we present a new customized LLM solution with a modest parameter count of only 7B, achieving better performance than GPT-3.5 on two representative benchmarks for RTL code generation. This remarkable balance between accuracy and efficiency is made possible by leveraging our new RTL code dataset and a customized LLM algorithm, both of which will be made fully open-source. Furthermore, we have successfully quantized our LLM to 4-bit with a total size of 4GB, enabling it to function on a single laptop with only slight performance degradation. This efficiency allows the RTL generator to serve as a local assistant for engineers, ensuring all design privacy concerns are addressed.
INT v.s. FP: A Comprehensive Study of Fine-Grained Low-bit Quantization Formats
Modern AI hardware, such as Nvidia's Blackwell architecture, is increasingly embracing low-precision floating-point (FP) formats to handle the pervasive activation outliers in Large Language Models (LLMs). Despite this industry trend, a unified comparison of FP and integer (INT) quantization across varying granularities has been missing, leaving algorithm and hardware co-design without clear guidance. This paper fills that gap by systematically investigating the trade-offs between FP and INT formats. We reveal a critical performance crossover: while FP excels in coarse-grained quantization, the comparison at fine-grained (block-wise) levels is more nuanced. Our comprehensive comparison demonstrates that for popular 8-bit fine-grained formats (e.g., MX with block size 32), MXINT8 is superior to its FP counterpart in both algorithmic accuracy and hardware efficiency. However, for 4-bit formats, FP (e.g., MXFP4, NVFP4) often holds an accuracy advantage , though we show that NVINT4 can surpass NVFP4 when outlier-mitigation techniques like Hadamard rotation are applied. We also introduce a symmetric clipping method that resolves gradient bias in fine-grained low-bit INT training, enabling nearly lossless performance for MXINT8 training. These findings challenge the current hardware trajectory, demonstrating that a one-size-fits-all FP approach is suboptimal and advocating that fine-grained INT formats, particularly MXINT8, offer a better balance of accuracy, power, and efficiency for future AI accelerators.
LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators
Large Language Models (LLMs) have propelled groundbreaking advancements across several domains and are commonly used for text generation applications. However, the computational demands of these complex models pose significant challenges, requiring efficient hardware acceleration. Benchmarking the performance of LLMs across diverse hardware platforms is crucial to understanding their scalability and throughput characteristics. We introduce LLM-Inference-Bench, a comprehensive benchmarking suite to evaluate the hardware inference performance of LLMs. We thoroughly analyze diverse hardware platforms, including GPUs from Nvidia and AMD and specialized AI accelerators, Intel Habana and SambaNova. Our evaluation includes several LLM inference frameworks and models from LLaMA, Mistral, and Qwen families with 7B and 70B parameters. Our benchmarking results reveal the strengths and limitations of various models, hardware platforms, and inference frameworks. We provide an interactive dashboard to help identify configurations for optimal performance for a given hardware platform.
Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy
Large Language Models (LLMs) are susceptible to security and safety threats, such as prompt injection, prompt extraction, and harmful requests. One major cause of these vulnerabilities is the lack of an instruction hierarchy. Modern LLM architectures treat all inputs equally, failing to distinguish between and prioritize various types of instructions, such as system messages, user prompts, and data. As a result, lower-priority user prompts may override more critical system instructions, including safety protocols. Existing approaches to achieving instruction hierarchy, such as delimiters and instruction-based training, do not address this issue at the architectural level. We introduce the Instructional Segment Embedding (ISE) technique, inspired by BERT, to modern large language models, which embeds instruction priority information directly into the model. This approach enables models to explicitly differentiate and prioritize various instruction types, significantly improving safety against malicious prompts that attempt to override priority rules. Our experiments on the Structured Query and Instruction Hierarchy benchmarks demonstrate an average robust accuracy increase of up to 15.75% and 18.68%, respectively. Furthermore, we observe an improvement in instruction-following capability of up to 4.1% evaluated on AlpacaEval. Overall, our approach offers a promising direction for enhancing the safety and effectiveness of LLM architectures.
Inference Performance Optimization for Large Language Models on CPUs
Large language models (LLMs) have shown exceptional performance and vast potential across diverse tasks. However, the deployment of LLMs with high performance in low-resource environments has garnered significant attention in the industry. When GPU hardware resources are limited, we can explore alternative options on CPUs. To mitigate the financial burden and alleviate constraints imposed by hardware resources, optimizing inference performance is necessary. In this paper, we introduce an easily deployable inference performance optimization solution aimed at accelerating LLMs on CPUs. In this solution, we implement an effective way to reduce the KV cache size while ensuring precision. We propose a distributed inference optimization approach and implement it based on oneAPI Collective Communications Library. Furthermore, we propose optimization approaches for LLMs on CPU, and conduct tailored optimizations for the most commonly used models. The code is open-sourced at https://github.com/intel/xFasterTransformer.
SelfPiCo: Self-Guided Partial Code Execution with LLMs
Code executability plays a vital role in software debugging and testing (e.g., detecting runtime exceptions or assertion violations). However, code execution, especially partial or arbitrary code execution, is a non-trivial task due to missing definitions and complex third-party dependencies. To make partial code (such as code snippets posted on the web or code fragments deep inside complex software projects) executable, the existing study has proposed a machine learning model to predict the undefined element types and inject the pre-defined dummy values into execution. However, the performance of their tool is limited due to its simply designed dummy values and the inability to continue learning. In this paper, we design and implement a novel framework, named SelfPiCo (Self Guided Partial Code Executor), to dynamically guide partial code execution by incorporating the open-source LLM (i.e., Code Llama) within an interactive loop. Particularly, SelfPiCo leverages few-shot in-context learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning based on fine-tuning the Code Llama model. SelfPiCo continuously learns from code execution results and refines its predictions step after step. Our evaluations demonstrate that SelfPiCo can execute 72.7% and 83.3% of all lines in the open-source code and Stack Overflow snippets, outperforming the most recent state-of-the-art Lexecutor by 37.9% and 33.5%, respectively. Moreover, SelfPiCo successfully detected 18 and 33 runtime type error issues by executing the partial code from eight GitHub software projects and 43 Stack Overflow posts, demonstrating the practical usage and potential application of our framework in practice.
HLStrans: Dataset for LLM-Driven C-to-HLS Hardware Code Synthesis
High-level synthesis (HLS) enables software developers to describe and implement hardware at a higher level of abstraction by using C/C++ instead of traditional hardware description languages to automatically generate FPGA-ready designs. However, generating HLS code significantly differs from standard C/C++: it disallows certain coding idioms, relies on specialized libraries, and critically requires fine-grained transformations and the insertion of optimization directives (pragmas) to achieve high performance. Large language models (LLMs) have shown promise in automating such transformations, yet existing open-source datasets lack sufficient complexity and optimization diversity. To address this gap, we introduce the HLStrans dataset, a comprehensive collection of 137 distinct real word programs, each annotated with a variety of C-to-HLS transformations that yield over 23K labeled design variants. These include a broad spectrum of pragmas and code-level optimizations. We benchmark state-of-the-art LLMs on this dataset to evaluate their ability to generate synthesizable, high-performance HLS code. As part of an ongoing effort, we plan to expand the HLStrans dataset in both scale and program variety, further empowering research at the intersection of AI and hardware synthesis.
Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization
Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifications encoded in hardware description languages like Verilog into highly efficient implementations using Boolean logic gates. The process involves a sequential application of logic minimization heuristics (``synthesis recipe"), with their arrangement significantly impacting crucial metrics such as area and delay. Addressing the challenge posed by the broad spectrum of design complexities - from variations of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g., innovative processor instructions) - requires a nuanced `synthesis recipe` guided by human expertise and intuition. This study conducts a thorough examination of learning and search techniques for logic synthesis, unearthing a surprising revelation: pre-trained agents, when confronted with entirely novel designs, may veer off course, detrimentally affecting the search trajectory. We present ABC-RL, a meticulously tuned alpha parameter that adeptly adjusts recommendations from pre-trained agents during the search process. Computed based on similarity scores through nearest neighbor retrieval from the training dataset, ABC-RL yields superior synthesis recipes tailored for a wide array of hardware designs. Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques. Furthermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR) when compared to current state-of-the-art methodologies.
CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization
The increasing complexity and high costs associated with modern processor design have led to a surge in demand for processor design automation. Instruction-tuned large language models (LLMs) have demonstrated remarkable performance in automatically generating code for general-purpose programming languages like Python. However, these methods fail on hardware description languages (HDLs) like Verilog due to the scarcity of high-quality instruction tuning data, as even advanced LLMs like GPT-3.5 exhibit limited performance on Verilog generation. Regarding this issue, we observe that (1) Verilog code collected from the real world has higher quality than those generated by LLMs. (2) LLMs like GPT-3.5 excel in summarizing Verilog code rather than generating it. Based on these observations, this paper introduces CodeV, a series of open-source instruction-tuned Verilog generation LLMs. Instead of generating descriptions first and then getting the corresponding code from advanced LLMs, we prompt the LLM with Verilog code and let the LLM generate the corresponding natural language description by multi-level summarization. Experimental results show that CodeV relatively surpasses the previous open-source SOTA by 14.4% (BetterV in VerilogEval) and 11.3% (RTLCoder in RTLLM) respectively, and also relatively outperforms previous commercial SOTA GPT-4 by 22.1% in VerilogEval.
Co-design Hardware and Algorithm for Vector Search
Vector search has emerged as the foundation for large-scale information retrieval and machine learning systems, with search engines like Google and Bing processing tens of thousands of queries per second on petabyte-scale document datasets by evaluating vector similarities between encoded query texts and web documents. As performance demands for vector search systems surge, accelerated hardware offers a promising solution in the post-Moore's Law era. We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator. FANNS attains up to 23.0times and 37.2times speedup compared to FPGA and CPU baselines, respectively, and demonstrates superior scalability to GPUs, achieving 5.5times and 7.6times speedup in median and 95th percentile (P95) latency within an eight-accelerator configuration. The remarkable performance of FANNS lays a robust groundwork for future FPGA integration in data centers and AI supercomputers.
MSCCL++: Rethinking GPU Communication Abstractions for Cutting-edge AI Applications
Modern cutting-edge AI applications are being developed over fast-evolving, heterogeneous, nascent hardware devices. This requires frequent reworking of the AI software stack to adopt bottom-up changes from new hardware, which takes time for general-purpose software libraries. Consequently, real applications often develop custom software stacks optimized for their specific workloads and hardware. Custom stacks help in quick development and optimization, but incur a lot of redundant efforts across applications in writing non-portable code. This paper discusses an alternative communication library interface for AI applications that offers both portability and performance by reducing redundant efforts while maintaining flexibility for customization. We present MSCCL++, a novel abstraction of GPU communication based on separation of concerns: (1) a primitive interface provides a minimal hardware abstraction as a common ground for software and hardware developers to write custom communication, and (2) higher-level portable interfaces and specialized implementations enable optimization for different workloads and hardware environments. This approach makes the primitive interface reusable across applications while enabling highly flexible optimization. Compared to state-of-the-art baselines (NCCL, RCCL, and MSCCL), MSCCL++ achieves speedups of up to 5.4times for collective communication and up to 15% for real-world AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and is also adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open-source and available at https://github.com/microsoft/mscclpp.
Accurate Block Quantization in LLMs with Outliers
The demand for inference on extremely large scale LLMs has seen enormous growth in the recent months. It made evident the colossal shortage of dedicated hardware capable of efficient and fast processing of the involved compute and memory movement. The problem is aggravated by the exploding raise in the lengths of the sequences being processed, since those require efficient on-chip storage of the KV-cache of size proportional to the sequence length. To make the required compute feasible and fit the involved data into available memory, numerous quantization techniques have been proposed that allow accurate quantization for both weights and activations. One of the main recent breakthroughs in this direction was introduction of the family of Block Floating Point (BFP) formats characterized by a block of mantissas with a shared scale factor. These enable memory- power-, and compute- efficient hardware support of the tensor operations and provide extremely good quantization accuracy. The main issues preventing widespread application of block formats is caused by the presence of outliers in weights and activations since those affect the accuracy of the other values in the same block. In this paper, we focus on the most critical problem of limited KV-cache storage. We propose a novel approach enabling usage of low precision BFP formats without compromising the resulting model accuracy. We exploit the common channel-wise patterns exhibited by the outliers to rearrange them in such a way, that their quantization quality is significantly improved. The methodology yields 2x savings in the memory footprint without significant degradation of the model's accuracy. Importantly, the rearrangement of channels happens at the compile time and thus has no impact on the inference latency.
SSM-RDU: A Reconfigurable Dataflow Unit for Long-Sequence State-Space Models
Long-sequence state-space models (SSMs) such as Hyena and Mamba replace the quadratic complexity of self-attention with more efficient FFT and scan operations. However, modern accelerators like GPUs are poorly suited to these non-GEMM workloads due to rigid execution models and specialization for dense matrix operations. This paper proposes architectural extensions to a baseline Reconfigurable Dataflow Unit (RDU) that efficiently support FFT-based and scan-based SSMs. By introducing lightweight interconnect enhancements within compute tiles, the extended RDU enables spatial mapping of FFT and scan dataflows with less than 1% area and power overhead. The resulting architecture achieves a 5.95X speedup over the GPU and a 1.95X speedup over the baseline RDU for Hyena, and a 2.12X and 1.75X speedup over the GPU and baseline RDU, respectively, for Mamba.
V-Seek: Accelerating LLM Reasoning on Open-hardware Server-class RISC-V Platforms
The recent exponential growth of Large Language Models (LLMs) has relied on GPU-based systems. However, CPUs are emerging as a flexible and lower-cost alternative, especially when targeting inference and reasoning workloads. RISC-V is rapidly gaining traction in this area, given its open and vendor-neutral ISA. However, the RISC-V hardware for LLM workloads and the corresponding software ecosystem are not fully mature and streamlined, given the requirement of domain-specific tuning. This paper aims at filling this gap, focusing on optimizing LLM inference on the Sophon SG2042, the first commercially available many-core RISC-V CPU with vector processing capabilities. On two recent state-of-the-art LLMs optimized for reasoning, DeepSeek R1 Distill Llama 8B and DeepSeek R1 Distill QWEN 14B, we achieve 4.32/2.29 token/s for token generation and 6.54/3.68 token/s for prompt processing, with a speed up of up 2.9x/3.0x compared to our baseline.
MultiKernelBench: A Multi-Platform Benchmark for Kernel Generation
The automatic generation of deep learning (DL) kernels using large language models (LLMs) has emerged as a promising approach to reduce the manual effort and hardware-specific expertise required for writing high-performance operator implementations. However, existing benchmarks for evaluating LLMs in this domain suffer from limited hardware support, coarse-grained kernel categorization, and imbalanced task coverage. To address these limitations, we introduce MultiKernelBench, the first comprehensive, multi-platform benchmark for LLM-based DL kernel generation. MultiKernelBench spans 285 tasks across 14 well-defined kernel categories and supports three major hardware platforms: Nvidia GPUs, Huawei NPUs, and Google TPUs. To enable future extensibility, we design a modular backend abstraction layer that decouples platform-specific logic from the core benchmarking infrastructure, allowing easy integration of new hardware platforms. We further propose a simple yet effective category-aware one-shot prompting method that improves generation quality by providing in-category exemplars. Through systematic evaluations of seven state-of-the-art LLMs, we reveal significant variation in task difficulty, poor generalization to platforms with less training exposure, and the effectiveness of targeted prompting strategies. MultiKernelBench is publicly available at https://github.com/wzzll123/MultiKernelBench.
CreativEval: Evaluating Creativity of LLM-Based Hardware Code Generation
Large Language Models (LLMs) have proved effective and efficient in generating code, leading to their utilization within the hardware design process. Prior works evaluating LLMs' abilities for register transfer level code generation solely focus on functional correctness. However, the creativity associated with these LLMs, or the ability to generate novel and unique solutions, is a metric not as well understood, in part due to the challenge of quantifying this quality. To address this research gap, we present CreativeEval, a framework for evaluating the creativity of LLMs within the context of generating hardware designs. We quantify four creative sub-components, fluency, flexibility, originality, and elaboration, through various prompting and post-processing techniques. We then evaluate multiple popular LLMs (including GPT models, CodeLlama, and VeriGen) upon this creativity metric, with results indicating GPT-3.5 as the most creative model in generating hardware designs.
Clustering and Ranking: Diversity-preserved Instruction Selection through Expert-aligned Quality Estimation
With contributions from the open-source community, a vast amount of instruction tuning (IT) data has emerged. Given the significant resource allocation required for training and evaluating models, it is advantageous to have an efficient method for selecting high-quality IT data. However, existing methods for instruction data selection have limitations such as relying on fragile external APIs, being affected by biases in GPT models, or reducing the diversity of the selected instruction dataset. In this paper, we propose an industrial-friendly, expert-aligned and diversity-preserved instruction data selection method: Clustering and Ranking (CaR). CaR employs a two-step process: first, it ranks instruction pairs using a high-accuracy (84.25%) scoring model aligned with expert preferences; second, it preserves dataset diversity through clustering. In our experiment, CaR efficiently selected a mere 1.96% of Alpaca's IT data, yet the resulting AlpaCaR model surpassed Alpaca's performance by an average of 32.1% in GPT-4 evaluations. Moreover, we find that data selecting is a consistent paradigm whether the pre-trained model is more capable or the model parameters scaling up. Our approach employs compact models with 550M parameters and incurs just 11.2% of the financial outlay of current methods, enhancing its industrial deployability.
Veritas: Deterministic Verilog Code Synthesis from LLM-Generated Conjunctive Normal Form
Automated Verilog code synthesis poses significant challenges and typically demands expert oversight. Traditional high-level synthesis (HLS) methods often fail to scale for real-world designs. While large language models (LLMs) have enhanced scalability, they often introduce syntactical and logical errors requiring extensive post-generation verification. Here, we introduce a novel conjunctive normal form (CNF)-guided synthesis methodology. The idea is to have an LLM generate CNF clauses, a format widely used for formal verification and synthesis validation in hardware design, but here it is used to formally describe the desired circuit functionality. These CNF specifications are then deterministically converted into Verilog, ensuring correctness by construction. Our approach fine-tunes an open-source and lightweight LLM, namely the CPU-deployable LLama-3.2-3B-Instruct model (parameters < 4B), on a dataset of standard RTL components. Experimental results demonstrate that our approach reliably produces functionally correct Verilog code on the first attempt, compared to other lightweight open-source SoTA works such as Verigen (2B parameters) and RTLCoder (4-bit quantized with around 7B parameters). We will release our method and data in full post peer-review.
When Models Can't Follow: Testing Instruction Adherence Across 256 LLMs
Despite widespread deployment of Large Language Models, systematic evaluation of instruction-following capabilities remains challenging. While comprehensive benchmarks exist, focused assessments that quickly diagnose specific instruction adherence patterns are valuable. As newer models may be trained on existing benchmarks, novel evaluation approaches are needed to assess genuine capabilities rather than memorized performance. This paper presents a streamlined evaluation framework using twenty carefully designed prompts to assess LLM instruction-following across diverse task categories. We demonstrate this framework through a large-scale empirical study conducted on October 14, 2025, testing 256 verified working models from 331 available via OpenRouter. To ensure methodological rigor and prevent selection bias, we first verified each model's basic functionality before inclusion. Unlike large-scale benchmarks requiring extensive computational resources, our approach offers a practical diagnostic tool researchers and practitioners can readily apply. Our methodology builds upon verifiable instructions while introducing a compact test suite balancing comprehensiveness with efficiency. Each prompt targets distinct aspects of instruction following, including format compliance, content constraints, logical sequencing, and multi-step task execution. We evaluate models from major providers (OpenAI, Anthropic, Google, Meta, Mistral) and emerging implementations (Qwen, DeepSeek, community models), providing comparative performance analysis. Our findings reveal consistent failure modes and identify specific instruction types posing particular challenges. This work contributes both a practical evaluation tool and one of the most comprehensive empirical analyses of instruction-following capabilities across the contemporary LLM landscape.
The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
Today's LLMs are susceptible to prompt injections, jailbreaks, and other attacks that allow adversaries to overwrite a model's original instructions with their own malicious prompts. In this work, we argue that one of the primary vulnerabilities underlying these attacks is that LLMs often consider system prompts (e.g., text from an application developer) to be the same priority as text from untrusted users and third parties. To address this, we propose an instruction hierarchy that explicitly defines how models should behave when instructions of different priorities conflict. We then propose a data generation method to demonstrate this hierarchical instruction following behavior, which teaches LLMs to selectively ignore lower-privileged instructions. We apply this method to GPT-3.5, showing that it drastically increases robustness -- even for attack types not seen during training -- while imposing minimal degradations on standard capabilities.
Scalable MatMul-free Language Modeling
Matrix multiplication (MatMul) typically dominates the overall computational cost of large language models (LLMs). This cost only grows as LLMs scale to larger embedding dimensions and context lengths. In this work, we show that MatMul operations can be completely eliminated from LLMs while maintaining strong performance at billion-parameter scales. Our experiments show that our proposed MatMul-free models achieve performance on-par with state-of-the-art Transformers that require far more memory during inference at a scale up to at least 2.7B parameters. We investigate the scaling laws and find that the performance gap between our MatMul-free models and full precision Transformers narrows as the model size increases. We also provide a GPU-efficient implementation of this model which reduces memory usage by up to 61% over an unoptimized baseline during training. By utilizing an optimized kernel during inference, our model's memory consumption can be reduced by more than 10x compared to unoptimized models. To properly quantify the efficiency of our architecture, we build a custom hardware solution on an FPGA which exploits lightweight operations beyond what GPUs are capable of. We processed billion-parameter scale models at 13W beyond human readable throughput, moving LLMs closer to brain-like efficiency. This work not only shows how far LLMs can be stripped back while still performing effectively, but also points at the types of operations future accelerators should be optimized for in processing the next generation of lightweight LLMs. Our code implementation is available at https://github.com/ridgerchu/matmulfreellm.
Efficient Tabular Data Preprocessing of ML Pipelines
Data preprocessing pipelines, which includes data decoding, cleaning, and transforming, are a crucial component of Machine Learning (ML) training. Thy are computationally intensive and often become a major bottleneck, due to the increasing performance gap between the CPUs used for preprocessing and the GPUs used for model training. Recent studies show that a significant number of CPUs across several machines are required to achieve sufficient throughput to saturate the GPUs, leading to increased resource and energy consumption. When the pipeline involves vocabulary generation, the preprocessing performance scales poorly due to significant row-wise synchronization overhead between different CPU cores and servers. To address this limitation, in this paper we present the design of Piper, a hardware accelerator for tabular data preprocessing, prototype it on FPGAs, and demonstrate its potential for training pipelines of commercial recommender systems. Piper achieves 4.7 sim 71.3times speedup in latency over a 128-core CPU server and outperforms a data-center GPU by 4.8sim 20.3times when using binary input. The impressive performance showcases Piper's potential to increase the efficiency of data preprocessing pipelines and significantly reduce their resource consumption.
OHQ: On-chip Hardware-aware Quantization
Quantization emerges as one of the most promising approaches for deploying advanced deep models on resource-constrained hardware. Mixed-precision quantization leverages multiple bit-width architectures to unleash the accuracy and efficiency potential of quantized models. However, existing mixed-precision quantization suffers exhaustive search space that causes immense computational overhead. The quantization process thus relies on separate high-performance devices rather than locally, which also leads to a significant gap between the considered hardware metrics and the real deployment.In this paper, we propose an On-chip Hardware-aware Quantization (OHQ) framework that performs hardware-aware mixed-precision quantization without accessing online devices. First, we construct the On-chip Quantization Awareness (OQA) pipeline, enabling perceive the actual efficiency metrics of the quantization operator on the hardware.Second, we propose Mask-guided Quantization Estimation (MQE) technique to efficiently estimate the accuracy metrics of operators under the constraints of on-chip-level computing power.By synthesizing network and hardware insights through linear programming, we obtain optimized bit-width configurations. Notably, the quantization process occurs on-chip entirely without any additional computing devices and data access. We demonstrate accelerated inference after quantization for various architectures and compression ratios, achieving 70% and 73% accuracy for ResNet-18 and MobileNetV3, respectively. OHQ improves latency by 15~30% compared to INT8 on deployment.
TZ-LLM: Protecting On-Device Large Language Models with Arm TrustZone
Large Language Models (LLMs) deployed on mobile devices offer benefits like user privacy and reduced network latency, but introduce a significant security risk: the leakage of proprietary models to end users. To mitigate this risk, we propose a system design for protecting on-device LLMs using Arm Trusted Execution Environment (TEE), TrustZone. Our system addresses two primary challenges: (1) The dilemma between memory efficiency and fast inference (caching model parameters within TEE memory). (2) The lack of efficient and secure Neural Processing Unit (NPU) time-sharing between Rich Execution Environment (REE) and TEE. Our approach incorporates two key innovations. First, we employ pipelined restoration, leveraging the deterministic memory access patterns of LLM inference to prefetch parameters on demand, hiding memory allocation, I/O and decryption latency under computation time. Second, we introduce a co-driver design, creating a minimal data plane NPU driver in the TEE that collaborates with the full-fledged REE driver. This reduces the TEE TCB size and eliminates control plane reinitialization overhead during NPU world switches. We implemented our system on the emerging OpenHarmony OS and the llama.cpp inference framework, and evaluated it with various LLMs on an Arm Rockchip device. Compared to a strawman TEE baseline lacking our optimizations, our system reduces TTFT by up to 90.9% and increases decoding speed by up to 23.2%.
Soft Instruction De-escalation Defense
Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an external environment; this makes them susceptible to prompt injections when dealing with untrusted data. To overcome this limitation, we propose SIC (Soft Instruction Control)-a simple yet effective iterative prompt sanitization loop designed for tool-augmented LLM agents. Our method repeatedly inspects incoming data for instructions that could compromise agent behavior. If such content is found, the malicious content is rewritten, masked, or removed, and the result is re-evaluated. The process continues until the input is clean or a maximum iteration limit is reached; if imperative instruction-like content remains, the agent halts to ensure security. By allowing multiple passes, our approach acknowledges that individual rewrites may fail but enables the system to catch and correct missed injections in later steps. Although immediately useful, worst-case analysis shows that SIC is not infallible; strong adversary can still get a 15% ASR by embedding non-imperative workflows. This nonetheless raises the bar.
Adaptive Orchestration for Large-Scale Inference on Heterogeneous Accelerator Systems Balancing Cost, Performance, and Resilience
The surge in generative AI workloads has created a need for scalable inference systems that can flexibly harness both GPUs and specialized accelerators while containing operational costs. This paper proposes a hardware-agnostic control loop that adaptively allocates requests across heterogeneous accelerators based on real-time cost and capacity signals. The approach sustains low latency and high throughput by dynamically shifting between cost-optimized and capacity-optimized modes, ensuring the most efficient use of expensive compute resources under fluctuating availability. Evaluated using the Stable Diffusion model, the framework consistently meets latency targets, automatically redirects traffic during capacity shortfalls, and capitalizes on lower-cost accelerators when possible. These results highlight how a feedback-driven deployment strategy, spanning the entire software and hardware stack, can help organizations efficiently scale generative AI workloads while maintaining resilience in the face of limited accelerator capacity.
Smaller But Better: Unifying Layout Generation with Smaller Large Language Models
We propose LGGPT, an LLM-based model tailored for unified layout generation. First, we propose Arbitrary Layout Instruction (ALI) and Universal Layout Response (ULR) as the uniform I/O template. ALI accommodates arbitrary layout generation task inputs across multiple layout domains, enabling LGGPT to unify both task-generic and domain-generic layout generation hitherto unexplored. Collectively, ALI and ULR boast a succinct structure that forgoes superfluous tokens typically found in existing HTML-based formats, facilitating efficient instruction tuning and boosting unified generation performance. In addition, we propose an Interval Quantization Encoding (IQE) strategy that compresses ALI into a more condensed structure. IQE precisely preserves valid layout clues while eliminating the less informative placeholders, facilitating LGGPT to capture complex and variable layout generation conditions during the unified training process. Experimental results demonstrate that LGGPT achieves superior or on par performance compared to existing methods. Notably, LGGPT strikes a prominent balance between proficiency and efficiency with a compact 1.5B parameter LLM, which beats prior 7B or 175B models even in the most extensive and challenging unified scenario. Furthermore, we underscore the necessity of employing LLMs for unified layout generation and suggest that 1.5B could be an optimal parameter size by comparing LLMs of varying scales. Code is available at https://github.com/NiceRingNode/LGGPT.
Customizing a Large Language Model for VHDL Design of High-Performance Microprocessors
The use of Large Language Models (LLMs) in hardware design has taken off in recent years, principally through its incorporation in tools that increase chip designer productivity. There has been considerable discussion about the use of LLMs in RTL specifications of chip designs, for which the two most popular languages are Verilog and VHDL. LLMs and their use in Verilog design has received significant attention due to the higher popularity of the language, but little attention so far has been given to VHDL despite its continued popularity in the industry. There has also been little discussion about the unique needs of organizations that engage in high-performance processor design, and techniques to deploy AI solutions in these settings. In this paper, we describe our journey in developing a Large Language Model (LLM) specifically for the purpose of explaining VHDL code, a task that has particular importance in an organization with decades of experience and assets in high-performance processor design. We show how we developed test sets specific to our needs and used them for evaluating models as we performed extended pretraining (EPT) of a base LLM. Expert evaluation of the code explanations produced by the EPT model increased to 69% compared to a base model rating of 43%. We further show how we developed an LLM-as-a-judge to gauge models similar to expert evaluators. This led us to deriving and evaluating a host of new models, including an instruction-tuned version of the EPT model with an expected expert evaluator rating of 71%. Our experiments also indicate that with the potential use of newer base models, this rating can be pushed to 85% and beyond. We conclude with a discussion on further improving the quality of hardware design LLMs using exciting new developments in the Generative AI world.
DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures using Lookup Tables
A lot of recent progress has been made in ultra low-bit quantization, promising significant improvements in latency, memory footprint and energy consumption on edge devices. Quantization methods such as Learned Step Size Quantization can achieve model accuracy that is comparable to full-precision floating-point baselines even with sub-byte quantization. However, it is extremely challenging to deploy these ultra low-bit quantized models on mainstream CPU devices because commodity SIMD (Single Instruction, Multiple Data) hardware typically supports no less than 8-bit precision. To overcome this limitation, we propose DeepGEMM, a lookup table based approach for the execution of ultra low-precision convolutional neural networks on SIMD hardware. The proposed method precomputes all possible products of weights and activations, stores them in a lookup table, and efficiently accesses them at inference time to avoid costly multiply-accumulate operations. Our 2-bit implementation outperforms corresponding 8-bit integer kernels in the QNNPACK framework by up to 1.74x on x86 platforms.
BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration
Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.
Code Comparison Tuning for Code Large Language Models
We present Code Comparison Tuning (CCT), a simple and effective tuning method for code large language models (Code LLMs) to better handle subtle code errors. Specifically, we integrate the concept of comparison into instruction tuning, both at the token and sequence levels, enabling the model to discern even the slightest deviations in code. To compare the original code with an erroneous version containing manually added code errors, we use token-level preference loss for detailed token-level comparisons. Additionally, we combine code segments to create a new instruction tuning sample for sequence-level comparisons, enhancing the model's bug-fixing capability. Experimental results on the HumanEvalFix benchmark show that CCT surpasses instruction tuning in pass@1 scores by up to 4 points across diverse code LLMs, and extensive analysis demonstrates the effectiveness of our method.
Floating-Point Multiply-Add with Approximate Normalization for Low-Cost Matrix Engines
The widespread adoption of machine learning algorithms necessitates hardware acceleration to ensure efficient performance. This acceleration relies on custom matrix engines that operate on full or reduced-precision floating-point arithmetic. However, conventional floating-point implementations can be power hungry. This paper proposes a method to improve the energy efficiency of the matrix engines used in machine learning algorithm acceleration. Our approach leverages approximate normalization within the floating-point multiply-add units as a means to reduce their hardware complexity, without sacrificing overall machine-learning model accuracy. Hardware synthesis results show that this technique reduces area and power consumption roughly by 16% and 13% on average for Bfloat16 format. Also, the error introduced in transformer model accuracy is 1% on average, for the most efficient configuration of the proposed approach.
Accelerate Scaling of LLM Alignment via Quantifying the Coverage and Depth of Instruction Set
With the growing demand for applying large language models to downstream tasks, improving model alignment performance and efficiency has become crucial. Such a process involves selecting informative instructions from a candidate pool. However, due to the complexity of instruction set distributions, the key factors driving the performance of aligned models remain unclear. As a result, current instruction set refinement methods fail to improve performance as the instruction pool expands continuously. To address this issue, we first investigate the key factors that influence the relationship between instruction dataset distribution and aligned model performance. Based on these insights, we propose a novel instruction data selection method. We identify that the depth of instructions and the coverage of the semantic space are the crucial factors determining downstream performance, which could explain over 70\% of the model loss on the development set. We then design an instruction selection algorithm to simultaneously maximize the depth and semantic coverage of the selected instructions. Experimental results demonstrate that, compared to state-of-the-art baseline methods, it can sustainably improve model performance at a faster pace and thus achieve ``Accelerated Scaling''.
PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation
Inference of Large Language Models (LLMs) across computer clusters has become a focal point of research in recent times, with many acceleration techniques taking inspiration from CPU speculative execution. These techniques reduce bottlenecks associated with memory bandwidth, but also increase end-to-end latency per inference run, requiring high speculation acceptance rates to improve performance. Combined with a variable rate of acceptance across tasks, speculative inference techniques can result in reduced performance. Additionally, pipeline-parallel designs require many user requests to maintain maximum utilization. As a remedy, we propose PipeInfer, a pipelined speculative acceleration technique to reduce inter-token latency and improve system utilization for single-request scenarios while also improving tolerance to low speculation acceptance rates and low-bandwidth interconnects. PipeInfer exhibits up to a 2.15times improvement in generation speed over standard speculative inference. PipeInfer achieves its improvement through Continuous Asynchronous Speculation and Early Inference Cancellation, the former improving latency and generation speed by running single-token inference simultaneously with several speculative runs, while the latter improves speed and latency by skipping the computation of invalidated runs, even in the middle of inference.
Compiling C to Safe Rust, Formalized
The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages. We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations. We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
DolphCoder: Echo-Locating Code Large Language Models with Diverse and Multi-Objective Instruction Tuning
Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Several instruction tuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model (DolphCoder) with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with distinct reasoning paths increases the code capability of LLMs. (2) Improving one's ability to evaluate the correctness of code solutions also enhances their ability to create it.
Denotationally Correct, Purely Functional, Efficient Reverse-mode Automatic Differentiation
Reverse-mode differentiation is used for optimization, but it introduces references, which break the purity of the underlying programs, making them notoriously harder to optimize. We present a reverse-mode differentiation on a purely functional language with array operations. It is the first one to deliver a provably efficient, purely functional, and denotationally correct reverse-mode differentiation. We show that our transformation is semantically correct and verifies the cheap gradient principle. Inspired by PROPs and compilation to categories, we introduce a novel intermediate representation that we call 'unary form'. Our reverse-mode transformation is factored as a compilation scheme through this intermediate representation. We obtain provably efficient gradients by performing general partial evaluation optimizations after our reverse-mode transformation, as opposed to manually derived ones. For simple first-order programs, the obtained output programs resemble static-single-assignment (SSA) code. We emphasize the modularity of our approach and show how our language can easily be enriched with more optimized primitives, as required for some speed-ups in practice.
OSS-Bench: Benchmark Generator for Coding LLMs
In light of the rapid adoption of AI coding assistants, LLM-assisted development has become increasingly prevalent, creating an urgent need for robust evaluation of generated code quality. Existing benchmarks often require extensive manual effort to create static datasets, rely on indirect or insufficiently challenging tasks, depend on non-scalable ground truth, or neglect critical low-level security evaluations, particularly memory-safety issues. In this work, we introduce OSS-Bench, a benchmark generator that automatically constructs large-scale, live evaluation tasks from real-world open-source software. OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety, leveraging robust signals like compilation failures, test-suite violations, and sanitizer alerts as ground truth. In our evaluation, the benchmark, instantiated as OSS-Bench(php) and OSS-Bench(sql), profiles 17 diverse LLMs, revealing insights such as intra-family behavioral patterns and inconsistencies between model size and performance. Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS and highlights LLMs' limited understanding of low-level code security via extended fuzzing experiments. Overall, OSS-Bench offers a practical and scalable framework for benchmarking the real-world coding capabilities of LLMs.
RTLRepoCoder: Repository-Level RTL Code Completion through the Combination of Fine-Tuning and Retrieval Augmentation
As an essential part of modern hardware design, manually writing Register Transfer Level (RTL) code such as Verilog is often labor-intensive. Following the tremendous success of large language models (LLMs), researchers have begun to explore utilizing LLMs for generating RTL code. However, current studies primarily focus on generating simple single modules, which can not meet the demands in real world. In fact, due to challenges in managing long-context RTL code and complex cross-file dependencies, existing solutions cannot handle large-scale Verilog repositories in practical hardware development. As the first endeavor to exclusively adapt LLMs for large-scale RTL development, we propose RTLRepoCoder, a groundbreaking solution that incorporates specific fine-tuning and Retrieval-Augmented Generation (RAG) for repository-level Verilog code completion. Open-source Verilog repositories from the real world, along with an extended context size, are used for domain-specific fine-tuning. The optimized RAG system improves the information density of the input context by retrieving relevant code snippets. Tailored optimizations for RAG are carried out, including the embedding model, the cross-file context splitting strategy, and the chunk size. Our solution achieves state-of-the-art performance on public benchmark, significantly surpassing GPT-4 and advanced domain-specific LLMs on Edit Similarity and Exact Match rate. Comprehensive experiments demonstrate the remarkable effectiveness of our approach and offer insights for future work.
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs and ASICs
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware. Our approach leverages Hessian-aware quantization (HAWQ) of NNs, the Quantized Open Neural Network Exchange (QONNX) intermediate representation, and the hls4ml tool flow for transpiling NNs into FPGA and ASIC firmware. This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow that can be deployed for real-time machine learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented on custom ASIC and FPGA hardware within a strict area and latency. Based on these constraints, we implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.
Self-attention Does Not Need O(n^2) Memory
We present a very simple algorithm for attention that requires O(1) memory with respect to sequence length and an extension to self-attention that requires O(log n) memory. This is in contrast with the frequently stated belief that self-attention requires O(n^2) memory. While the time complexity is still O(n^2), device memory rather than compute capability is often the limiting factor on modern accelerators. Thus, reducing the memory requirements of attention allows processing of longer sequences than might otherwise be feasible. We provide a practical implementation for accelerators that requires O(n) memory, is numerically stable, and is within a few percent of the runtime of the standard implementation of attention. We also demonstrate how to differentiate the function while remaining memory-efficient. For sequence length 16384, the memory overhead of self-attention is reduced by 59X for inference and by 32X for differentiation.
Badllama 3: removing safety finetuning from Llama 3 in minutes
We show that extensive LLM safety fine-tuning is easily subverted when an attacker has access to model weights. We evaluate three state-of-the-art fine-tuning methods-QLoRA, ReFT, and Ortho-and show how algorithmic advances enable constant jailbreaking performance with cuts in FLOPs and optimisation power. We strip safety fine-tuning from Llama 3 8B in one minute and Llama 3 70B in 30 minutes on a single GPU, and sketch ways to reduce this further.
Towards Automated Kernel Generation in the Era of LLMs
The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?
Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.
Less is More: Optimizing Function Calling for LLM Execution on Edge Devices
The advanced function-calling capabilities of foundation models open up new possibilities for deploying agents to perform complex API tasks. However, managing large amounts of data and interacting with numerous APIs makes function calling hardware-intensive and costly, especially on edge devices. Current Large Language Models (LLMs) struggle with function calling at the edge because they cannot handle complex inputs or manage multiple tools effectively. This results in low task-completion accuracy, increased delays, and higher power consumption. In this work, we introduce Less-is-More, a novel fine-tuning-free function-calling scheme for dynamic tool selection. Our approach is based on the key insight that selectively reducing the number of tools available to LLMs significantly improves their function-calling performance, execution time, and power efficiency on edge devices. Experimental results with state-of-the-art LLMs on edge hardware show agentic success rate improvements, with execution time reduced by up to 70% and power consumption by up to 40%.
MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability
We present MAESTRO, an evaluation suite for the testing, reliability, and observability of LLM-based MAS. MAESTRO standardizes MAS configuration and execution through a unified interface, supports integrating both native and third-party MAS via a repository of examples and lightweight adapters, and exports framework-agnostic execution traces together with system-level signals (e.g., latency, cost, and failures). We instantiate MAESTRO with 12 representative MAS spanning popular agentic frameworks and interaction patterns, and conduct controlled experiments across repeated runs, backend models, and tool configurations. Our case studies show that MAS executions can be structurally stable yet temporally variable, leading to substantial run-to-run variance in performance and reliability. We further find that MAS architecture is the dominant driver of resource profiles, reproducibility, and cost-latency-accuracy trade-off, often outweighing changes in backend models or tool settings. Overall, MAESTRO enables systematic evaluation and provides empirical guidance for designing and optimizing agentic systems.
EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models
In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at https://github.com/zjunlp/EasyInstruct, along with a running demo App at https://huggingface.co/spaces/zjunlp/EasyInstruct for quick-start, calling for broader research centered on instruction data.
LLM-Mesh: Enabling Elastic Sharing for Serverless LLM Inference
The rise of LLMs has driven demand for private serverless deployments, characterized by moderate-scale models and infrequent requests. While existing solutions follow exclusive GPU deployment, we take a step back to explore modern platforms and find that: Emerging CPU architectures with built-in accelerators are capable of serving LLMs but remain underutilized, and both CPUs and GPUs can accommodate multiple LLMs simultaneously. We propose LLM-Mesh, a serverless inference scheme for small-to-mid-sized LLMs that enables elastic sharing across heterogeneous hardware. LLM-Mesh tackles three fundamental challenges: (1) precise, fine-grained compute resource allocation at token-level to handle fluctuating computational demands; (2) a coordinated and forward-looking memory scaling mechanism to detect out-of-memory hazards and reduce operational overhead; and (3) a dual approach that reduces resource fragmentation through proactive preemption and reactive bin-packing. Experimental results on 4 32-core CPUs and 4 A100 GPUs show that LLM-Meshimproves service capacity by 44% - 63% through sharing, while further leveraging CPUs boosts this to 91% - 159%.
