Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOnline Symbolic Music Alignment with Offline Reinforcement Learning
Symbolic Music Alignment is the process of matching performed MIDI notes to corresponding score notes. In this paper, we introduce a reinforcement learning (RL)-based online symbolic music alignment technique. The RL agent - an attention-based neural network - iteratively estimates the current score position from local score and performance contexts. For this symbolic alignment task, environment states can be sampled exhaustively and the reward is dense, rendering a formulation as a simplified offline RL problem straightforward. We evaluate the trained agent in three ways. First, in its capacity to identify correct score positions for sampled test contexts; second, as the core technique of a complete algorithm for symbolic online note-wise alignment; and finally, as a real-time symbolic score follower. We further investigate the pitch-based score and performance representations used as the agent's inputs. To this end, we develop a second model, a two-step Dynamic Time Warping (DTW)-based offline alignment algorithm leveraging the same input representation. The proposed model outperforms a state-of-the-art reference model of offline symbolic music alignment.
Peransformer: Improving Low-informed Expressive Performance Rendering with Score-aware Discriminator
Highly-informed Expressive Performance Rendering (EPR) systems transform music scores with rich musical annotations into human-like expressive performance MIDI files. While these systems have achieved promising results, the availability of detailed music scores is limited compared to MIDI files and are less flexible to work with using a digital audio workstation (DAW). Recent advancements in low-informed EPR systems offer a more accessible alternative by directly utilizing score-derived MIDI as input, but these systems often exhibit suboptimal performance. Meanwhile, existing works are evaluated with diverse automatic metrics and data formats, hindering direct objective comparisons between EPR systems. In this study, we introduce Peransformer, a transformer-based low-informed EPR system designed to bridge the gap between low-informed and highly-informed EPR systems. Our approach incorporates a score-aware discriminator that leverages the underlying score-derived MIDI files and is trained on a score-to-performance paired, note-to-note aligned MIDI dataset. Experimental results demonstrate that Peransformer achieves state-of-the-art performance among low-informed systems, as validated by subjective evaluations. Furthermore, we extend existing automatic evaluation metrics for EPR systems and introduce generalized EPR metrics (GEM), enabling more direct, accurate, and reliable comparisons across EPR systems.
RUMAA: Repeat-Aware Unified Music Audio Analysis for Score-Performance Alignment, Transcription, and Mistake Detection
This study introduces RUMAA, a transformer-based framework for music performance analysis that unifies score-to-performance alignment, score-informed transcription, and mistake detection in a near end-to-end manner. Unlike prior methods addressing these tasks separately, RUMAA integrates them using pre-trained score and audio encoders and a novel tri-stream decoder capturing task interdependencies through proxy tasks. It aligns human-readable MusicXML scores with repeat symbols to full-length performance audio, overcoming traditional MIDI-based methods that rely on manually unfolded score-MIDI data with pre-specified repeat structures. RUMAA matches state-of-the-art alignment methods on non-repeated scores and outperforms them on scores with repeats in a public piano music dataset, while also delivering promising transcription and mistake detection results.
Predicting performance difficulty from piano sheet music images
Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
A Machine Learning Approach for MIDI to Guitar Tablature Conversion
Guitar tablature transcription consists in deducing the string and the fret number on which each note should be played to reproduce the actual musical part. This assignment should lead to playable string-fret combinations throughout the entire track and, in general, preserve parsimonious motion between successive combinations. Throughout the history of guitar playing, specific chord fingerings have been developed across different musical styles that facilitate common idiomatic voicing combinations and motion between them. This paper presents a method for assigning guitar tablature notation to a given MIDI-based musical part (possibly consisting of multiple polyphonic tracks), i.e. no information about guitar-idiomatic expressional characteristics is involved (e.g. bending etc.) The current strategy is based on machine learning and requires a basic assumption about how much fingers can stretch on a fretboard; only standard 6-string guitar tuning is examined. The proposed method also examines the transcription of music pieces that was not meant to be played or could not possibly be played by a guitar (e.g. potentially a symphonic orchestra part), employing a rudimentary method for augmenting musical information and training/testing the system with artificial data. The results present interesting aspects about what the system can achieve when trained on the initial and augmented dataset, showing that the training with augmented data improves the performance even in simple, e.g. monophonic, cases. Results also indicate weaknesses and lead to useful conclusions about possible improvements.
High Resolution Guitar Transcription via Domain Adaptation
Automatic music transcription (AMT) has achieved high accuracy for piano due to the availability of large, high-quality datasets such as MAESTRO and MAPS, but comparable datasets are not yet available for other instruments. In recent work, however, it has been demonstrated that aligning scores to transcription model activations can produce high quality AMT training data for instruments other than piano. Focusing on the guitar, we refine this approach to training on score data using a dataset of commercially available score-audio pairs. We propose the use of a high-resolution piano transcription model to train a new guitar transcription model. The resulting model obtains state-of-the-art transcription results on GuitarSet in a zero-shot context, improving on previously published methods.
Text2midi-InferAlign: Improving Symbolic Music Generation with Inference-Time Alignment
We present Text2midi-InferAlign, a novel technique for improving symbolic music generation at inference time. Our method leverages text-to-audio alignment and music structural alignment rewards during inference to encourage the generated music to be consistent with the input caption. Specifically, we introduce two objectives scores: a text-audio consistency score that measures rhythmic alignment between the generated music and the original text caption, and a harmonic consistency score that penalizes generated music containing notes inconsistent with the key. By optimizing these alignment-based objectives during the generation process, our model produces symbolic music that is more closely tied to the input captions, thereby improving the overall quality and coherence of the generated compositions. Our approach can extend any existing autoregressive model without requiring further training or fine-tuning. We evaluate our work on top of Text2midi - an existing text-to-midi generation model, demonstrating significant improvements in both objective and subjective evaluation metrics.
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.
AnalysisGNN: Unified Music Analysis with Graph Neural Networks
Recent years have seen a boom in computational approaches to music analysis, yet each one is typically tailored to a specific analytical domain. In this work, we introduce AnalysisGNN, a novel graph neural network framework that leverages a data-shuffling strategy with a custom weighted multi-task loss and logit fusion between task-specific classifiers to integrate heterogeneously annotated symbolic datasets for comprehensive score analysis. We further integrate a Non-Chord-Tone prediction module, which identifies and excludes passing and non-functional notes from all tasks, thereby improving the consistency of label signals. Experimental evaluations demonstrate that AnalysisGNN achieves performance comparable to traditional static-dataset approaches, while showing increased resilience to domain shifts and annotation inconsistencies across multiple heterogeneous corpora.
Fretting-Transformer: Encoder-Decoder Model for MIDI to Tablature Transcription
Music transcription plays a pivotal role in Music Information Retrieval (MIR), particularly for stringed instruments like the guitar, where symbolic music notations such as MIDI lack crucial playability information. This contribution introduces the Fretting-Transformer, an encoderdecoder model that utilizes a T5 transformer architecture to automate the transcription of MIDI sequences into guitar tablature. By framing the task as a symbolic translation problem, the model addresses key challenges, including string-fret ambiguity and physical playability. The proposed system leverages diverse datasets, including DadaGP, GuitarToday, and Leduc, with novel data pre-processing and tokenization strategies. We have developed metrics for tablature accuracy and playability to quantitatively evaluate the performance. The experimental results demonstrate that the Fretting-Transformer surpasses baseline methods like A* and commercial applications like Guitar Pro. The integration of context-sensitive processing and tuning/capo conditioning further enhances the model's performance, laying a robust foundation for future developments in automated guitar transcription.
MelodyT5: A Unified Score-to-Score Transformer for Symbolic Music Processing
In the domain of symbolic music research, the progress of developing scalable systems has been notably hindered by the scarcity of available training data and the demand for models tailored to specific tasks. To address these issues, we propose MelodyT5, a novel unified framework that leverages an encoder-decoder architecture tailored for symbolic music processing in ABC notation. This framework challenges the conventional task-specific approach, considering various symbolic music tasks as score-to-score transformations. Consequently, it integrates seven melody-centric tasks, from generation to harmonization and segmentation, within a single model. Pre-trained on MelodyHub, a newly curated collection featuring over 261K unique melodies encoded in ABC notation and encompassing more than one million task instances, MelodyT5 demonstrates superior performance in symbolic music processing via multi-task transfer learning. Our findings highlight the efficacy of multi-task transfer learning in symbolic music processing, particularly for data-scarce tasks, challenging the prevailing task-specific paradigms and offering a comprehensive dataset and framework for future explorations in this domain.
RenderBox: Expressive Performance Rendering with Text Control
Expressive music performance rendering involves interpreting symbolic scores with variations in timing, dynamics, articulation, and instrument-specific techniques, resulting in performances that capture musical can emotional intent. We introduce RenderBox, a unified framework for text-and-score controlled audio performance generation across multiple instruments, applying coarse-level controls through natural language descriptions and granular-level controls using music scores. Based on a diffusion transformer architecture and cross-attention joint conditioning, we propose a curriculum-based paradigm that trains from plain synthesis to expressive performance, gradually incorporating controllable factors such as speed, mistakes, and style diversity. RenderBox achieves high performance compared to baseline models across key metrics such as FAD and CLAP, and also tempo and pitch accuracy under different prompting tasks. Subjective evaluation further demonstrates that RenderBox is able to generate controllable expressive performances that sound natural and musically engaging, aligning well with prompts and intent.
Aligning Generative Music AI with Human Preferences: Methods and Challenges
Recent advances in generative AI for music have achieved remarkable fidelity and stylistic diversity, yet these systems often fail to align with nuanced human preferences due to the specific loss functions they use. This paper advocates for the systematic application of preference alignment techniques to music generation, addressing the fundamental gap between computational optimization and human musical appreciation. Drawing on recent breakthroughs including MusicRL's large-scale preference learning, multi-preference alignment frameworks like diffusion-based preference optimization in DiffRhythm+, and inference-time optimization techniques like Text2midi-InferAlign, we discuss how these techniques can address music's unique challenges: temporal coherence, harmonic consistency, and subjective quality assessment. We identify key research challenges including scalability to long-form compositions, reliability amongst others in preference modelling. Looking forward, we envision preference-aligned music generation enabling transformative applications in interactive composition tools and personalized music services. This work calls for sustained interdisciplinary research combining advances in machine learning, music-theory to create music AI systems that truly serve human creative and experiential needs.
Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval
Many applications of cross-modal music retrieval are related to connecting sheet music images to audio recordings. A typical and recent approach to this is to learn, via deep neural networks, a joint embedding space that correlates short fixed-size snippets of audio and sheet music by means of an appropriate similarity structure. However, two challenges that arise out of this strategy are the requirement of strongly aligned data to train the networks, and the inherent discrepancies of musical content between audio and sheet music snippets caused by local and global tempo differences. In this paper, we address these two shortcomings by designing a cross-modal recurrent network that learns joint embeddings that can summarize longer passages of corresponding audio and sheet music. The benefits of our method are that it only requires weakly aligned audio-sheet music pairs, as well as that the recurrent network handles the non-linearities caused by tempo variations between audio and sheet music. We conduct a number of experiments on synthetic and real piano data and scores, showing that our proposed recurrent method leads to more accurate retrieval in all possible configurations.
MusicScore: A Dataset for Music Score Modeling and Generation
Music scores are written representations of music and contain rich information about musical components. The visual information on music scores includes notes, rests, staff lines, clefs, dynamics, and articulations. This visual information in music scores contains more semantic information than audio and symbolic representations of music. Previous music score datasets have limited sizes and are mainly designed for optical music recognition (OMR). There is a lack of research on creating a large-scale benchmark dataset for music modeling and generation. In this work, we propose MusicScore, a large-scale music score dataset collected and processed from the International Music Score Library Project (IMSLP). MusicScore consists of image-text pairs, where the image is a page of a music score and the text is the metadata of the music. The metadata of MusicScore is extracted from the general information section of the IMSLP pages. The metadata includes rich information about the composer, instrument, piece style, and genre of the music pieces. MusicScore is curated into small, medium, and large scales of 400, 14k, and 200k image-text pairs with varying diversity, respectively. We build a score generation system based on a UNet diffusion model to generate visually readable music scores conditioned on text descriptions to benchmark the MusicScore dataset for music score generation. MusicScore is released to the public at https://huggingface.co/datasets/ZheqiDAI/MusicScore.
Deep Performer: Score-to-Audio Music Performance Synthesis
Music performance synthesis aims to synthesize a musical score into a natural performance. In this paper, we borrow recent advances in text-to-speech synthesis and present the Deep Performer -- a novel system for score-to-audio music performance synthesis. Unlike speech, music often contains polyphony and long notes. Hence, we propose two new techniques for handling polyphonic inputs and providing a fine-grained conditioning in a transformer encoder-decoder model. To train our proposed system, we present a new violin dataset consisting of paired recordings and scores along with estimated alignments between them. We show that our proposed model can synthesize music with clear polyphony and harmonic structures. In a listening test, we achieve competitive quality against the baseline model, a conditional generative audio model, in terms of pitch accuracy, timbre and noise level. Moreover, our proposed model significantly outperforms the baseline on an existing piano dataset in overall quality.
BACHI: Boundary-Aware Symbolic Chord Recognition Through Masked Iterative Decoding on Pop and Classical Music
Automatic chord recognition (ACR) via deep learning models has gradually achieved promising recognition accuracy, yet two key challenges remain. First, prior work has primarily focused on audio-domain ACR, while symbolic music (e.g., score) ACR has received limited attention due to data scarcity. Second, existing methods still overlook strategies that are aligned with human music analytical practices. To address these challenges, we make two contributions: (1) we introduce POP909-CL, an enhanced version of POP909 dataset with tempo-aligned content and human-corrected labels of chords, beats, keys, and time signatures; and (2) We propose BACHI, a symbolic chord recognition model that decomposes the task into different decision steps, namely boundary detection and iterative ranking of chord root, quality, and bass (inversion). This mechanism mirrors the human ear-training practices. Experiments demonstrate that BACHI achieves state-of-the-art chord recognition performance on both classical and pop music benchmarks, with ablation studies validating the effectiveness of each module.
Cluster and Separate: a GNN Approach to Voice and Staff Prediction for Score Engraving
This paper approaches the problem of separating the notes from a quantized symbolic music piece (e.g., a MIDI file) into multiple voices and staves. This is a fundamental part of the larger task of music score engraving (or score typesetting), which aims to produce readable musical scores for human performers. We focus on piano music and support homophonic voices, i.e., voices that can contain chords, and cross-staff voices, which are notably difficult tasks that have often been overlooked in previous research. We propose an end-to-end system based on graph neural networks that clusters notes that belong to the same chord and connects them with edges if they are part of a voice. Our results show clear and consistent improvements over a previous approach on two datasets of different styles. To aid the qualitative analysis of our results, we support the export in symbolic music formats and provide a direct visualization of our outputs graph over the musical score. All code and pre-trained models are available at https://github.com/CPJKU/piano_svsep
Generating Sample-Based Musical Instruments Using Neural Audio Codec Language Models
In this paper, we propose and investigate the use of neural audio codec language models for the automatic generation of sample-based musical instruments based on text or reference audio prompts. Our approach extends a generative audio framework to condition on pitch across an 88-key spectrum, velocity, and a combined text/audio embedding. We identify maintaining timbral consistency within the generated instruments as a major challenge. To tackle this issue, we introduce three distinct conditioning schemes. We analyze our methods through objective metrics and human listening tests, demonstrating that our approach can produce compelling musical instruments. Specifically, we introduce a new objective metric to evaluate the timbral consistency of the generated instruments and adapt the average Contrastive Language-Audio Pretraining (CLAP) score for the text-to-instrument case, noting that its naive application is unsuitable for assessing this task. Our findings reveal a complex interplay between timbral consistency, the quality of generated samples, and their correspondence to the input prompt.
Audio Foundation Models Outperform Symbolic Representations for Piano Performance Evaluation
Automated piano performance evaluation traditionally relies on symbolic (MIDI) representations, which capture note-level information but miss the acoustic nuances that characterize expressive playing. I propose using pre-trained audio foundation models, specifically MuQ and MERT, to predict 19 perceptual dimensions of piano performance quality. Using synthesized audio from PercePiano MIDI files (rendered via Pianoteq), I compare audio and symbolic approaches under controlled conditions where both derive from identical source data. The best model, MuQ layers 9-12 with Pianoteq soundfont augmentation, achieves R^2 = 0.537 (95% CI: [0.465, 0.575]), representing a 55% improvement over the symbolic baseline (R^2 = 0.347). Statistical analysis confirms significance (p < 10^-25) with audio outperforming symbolic on all 19 dimensions. I validate the approach through cross-soundfont generalization (R^2 = 0.534 +/- 0.075), difficulty correlation with an external dataset (rho = 0.623), and multi-performer consistency analysis. Analysis of audio-symbolic fusion reveals high error correlation (r = 0.738), explaining why fusion provides minimal benefit: audio representations alone are sufficient. I release the complete training pipeline, pretrained models, and inference code.
Local Curvature Smoothing with Stein's Identity for Efficient Score Matching
The training of score-based diffusion models (SDMs) is based on score matching. The challenge of score matching is that it includes a computationally expensive Jacobian trace. While several methods have been proposed to avoid this computation, each has drawbacks, such as instability during training and approximating the learning as learning a denoising vector field rather than a true score. We propose a novel score matching variant, local curvature smoothing with Stein's identity (LCSS). The LCSS bypasses the Jacobian trace by applying Stein's identity, enabling regularization effectiveness and efficient computation. We show that LCSS surpasses existing methods in sample generation performance and matches the performance of denoising score matching, widely adopted by most SDMs, in evaluations such as FID, Inception score, and bits per dimension. Furthermore, we show that LCSS enables realistic image generation even at a high resolution of 1024 times 1024.
PBSCR: The Piano Bootleg Score Composer Recognition Dataset
This article motivates, describes, and presents the PBSCR dataset for studying composer recognition of classical piano music. Our goal was to design a dataset that facilitates large-scale research on composer recognition that is suitable for modern architectures and training practices. To achieve this goal, we utilize the abundance of sheet music images and rich metadata on IMSLP, use a previously proposed feature representation called a bootleg score to encode the location of noteheads relative to staff lines, and present the data in an extremely simple format (2D binary images) to encourage rapid exploration and iteration. The dataset itself contains 40,000 62x64 bootleg score images for a 9-class recognition task, 100,000 62x64 bootleg score images for a 100-class recognition task, and 29,310 unlabeled variable-length bootleg score images for pretraining. The labeled data is presented in a form that mirrors MNIST images, in order to make it extremely easy to visualize, manipulate, and train models in an efficient manner. We include relevant information to connect each bootleg score image with its underlying raw sheet music image, and we scrape, organize, and compile metadata from IMSLP on all piano works to facilitate multimodal research and allow for convenient linking to other datasets. We release baseline results in a supervised and low-shot setting for future works to compare against, and we discuss open research questions that the PBSCR data is especially well suited to facilitate research on.
Uncovering the Computational Ingredients of Human-Like Representations in LLMs
The ability to translate diverse patterns of inputs into structured patterns of behavior has been thought to rest on both humans' and machines' ability to learn robust representations of relevant concepts. The rapid advancement of transformer-based large language models (LLMs) has led to a diversity of computational ingredients -- architectures, fine tuning methods, and training datasets among others -- but it remains unclear which of these ingredients are most crucial for building models that develop human-like representations. Further, most current LLM benchmarks are not suited to measuring representational alignment between humans and models, making benchmark scores unreliable for assessing if current LLMs are making progress towards becoming useful cognitive models. We address these limitations by first evaluating a set of over 70 models that widely vary in their computational ingredients on a triplet similarity task, a method well established in the cognitive sciences for measuring human conceptual representations, using concepts from the THINGS database. Comparing human and model representations, we find that models that undergo instruction-finetuning and which have larger dimensionality of attention heads are among the most human aligned, while multimodal pretraining and parameter size have limited bearing on alignment. Correlations between alignment scores and scores on existing benchmarks reveal that while some benchmarks (e.g., MMLU) are better suited than others (e.g., MUSR) for capturing representational alignment, no existing benchmark is capable of fully accounting for the variance of alignment scores, demonstrating their insufficiency in capturing human-AI alignment. Taken together, our findings help highlight the computational ingredients most essential for advancing LLMs towards models of human conceptual representation and address a key benchmarking gap in LLM evaluation.
Aligned Music Notation and Lyrics Transcription
The digitization of vocal music scores presents unique challenges that go beyond traditional Optical Music Recognition (OMR) and Optical Character Recognition (OCR), as it necessitates preserving the critical alignment between music notation and lyrics. This alignment is essential for proper interpretation and processing in practical applications. This paper introduces and formalizes, for the first time, the Aligned Music Notation and Lyrics Transcription (AMNLT) challenge, which addresses the complete transcription of vocal scores by jointly considering music symbols, lyrics, and their synchronization. We analyze different approaches to address this challenge, ranging from traditional divide-and-conquer methods that handle music and lyrics separately, to novel end-to-end solutions including direct transcription, unfolding mechanisms, and language modeling. To evaluate these methods, we introduce four datasets of Gregorian chants, comprising both real and synthetic sources, along with custom metrics specifically designed to assess both transcription and alignment accuracy. Our experimental results demonstrate that end-to-end approaches generally outperform heuristic methods in the alignment challenge, with language models showing particular promise in scenarios where sufficient training data is available. This work establishes the first comprehensive framework for AMNLT, providing both theoretical foundations and practical solutions for preserving and digitizing vocal music heritage.
Guitar Effects Recognition and Parameter Estimation with Convolutional Neural Networks
Despite the popularity of guitar effects, there is very little existing research on classification and parameter estimation of specific plugins or effect units from guitar recordings. In this paper, convolutional neural networks were used for classification and parameter estimation for 13 overdrive, distortion and fuzz guitar effects. A novel dataset of processed electric guitar samples was assembled, with four sub-datasets consisting of monophonic or polyphonic samples and discrete or continuous settings values, for a total of about 250 hours of processed samples. Results were compared for networks trained and tested on the same or on a different sub-dataset. We found that discrete datasets could lead to equally high performance as continuous ones, whilst being easier to design, analyse and modify. Classification accuracy was above 80\%, with confusion matrices reflecting similarities in the effects timbre and circuits design. With parameter values between 0.0 and 1.0, the mean absolute error is in most cases below 0.05, while the root mean square error is below 0.1 in all cases but one.
Closed-Form Diffusion Models
Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves competitive sampling times while running on consumer-grade CPUs.
DExter: Learning and Controlling Performance Expression with Diffusion Models
In the pursuit of developing expressive music performance models using artificial intelligence, this paper introduces DExter, a new approach leveraging diffusion probabilistic models to render Western classical piano performances. In this approach, performance parameters are represented in a continuous expression space and a diffusion model is trained to predict these continuous parameters while being conditioned on the musical score. Furthermore, DExter also enables the generation of interpretations (expressive variations of a performance) guided by perceptually meaningful features by conditioning jointly on score and perceptual feature representations. Consequently, we find that our model is useful for learning expressive performance, generating perceptually steered performances, and transferring performance styles. We assess the model through quantitative and qualitative analyses, focusing on specific performance metrics regarding dimensions like asynchrony and articulation, as well as through listening tests comparing generated performances with different human interpretations. Results show that DExter is able to capture the time-varying correlation of the expressive parameters, and compares well to existing rendering models in subjectively evaluated ratings. The perceptual-feature-conditioned generation and transferring capabilities of DExter are verified by a proxy model predicting perceptual characteristics of differently steered performances.
Scoring Time Intervals using Non-Hierarchical Transformer For Automatic Piano Transcription
The neural semi-Markov Conditional Random Field (semi-CRF) framework has demonstrated promise for event-based piano transcription. In this framework, all events (notes or pedals) are represented as closed time intervals tied to specific event types. The neural semi-CRF approach requires an interval scoring matrix that assigns a score for every candidate interval. However, designing an efficient and expressive architecture for scoring intervals is not trivial. This paper introduces a simple method for scoring intervals using scaled inner product operations that resemble how attention scoring is done in transformers. We show theoretically that, due to the special structure from encoding the non-overlapping intervals, under a mild condition, the inner product operations are expressive enough to represent an ideal scoring matrix that can yield the correct transcription result. We then demonstrate that an encoder-only structured non-hierarchical transformer backbone, operating only on a low-time-resolution feature map, is capable of transcribing piano notes and pedals with high accuracy and time precision. The experiment shows that our approach achieves the new state-of-the-art performance across all subtasks in terms of the F1 measure on the Maestro dataset.
From Generality to Mastery: Composer-Style Symbolic Music Generation via Large-Scale Pre-training
Despite progress in controllable symbolic music generation, data scarcity remains a challenge for certain control modalities. Composer-style music generation is a prime example, as only a few pieces per composer are available, limiting the modeling of both styles and fundamental music elements (e.g., melody, chord, rhythm). In this paper, we investigate how general music knowledge learned from a broad corpus can enhance the mastery of specific composer styles, with a focus on piano piece generation. Our approach follows a two-stage training paradigm. First, we pre-train a REMI-based music generation model on a large corpus of pop, folk, and classical music. Then, we fine-tune it on a small, human-verified dataset from four renowned composers, namely Bach, Mozart, Beethoven, and Chopin, using a lightweight adapter module to condition the model on style indicators. To evaluate the effectiveness of our approach, we conduct both objective and subjective evaluations on style accuracy and musicality. Experimental results demonstrate that our method outperforms ablations and baselines, achieving more precise composer-style modeling and better musical aesthetics. Additionally, we provide observations on how the model builds music concepts from the generality pre-training and refines its stylistic understanding through the mastery fine-tuning.
SoliReward: Mitigating Susceptibility to Reward Hacking and Annotation Noise in Video Generation Reward Models
Post-training alignment of video generation models with human preferences is a critical goal. Developing effective Reward Models (RMs) for this process faces significant methodological hurdles. Current data collection paradigms, reliant on in-prompt pairwise annotations, suffer from labeling noise. Concurrently, the architectural design of VLM-based RMs, particularly their output mechanisms, remains underexplored. Furthermore, RM is susceptible to reward hacking in post-training. To mitigate these limitations, we propose SoliReward, a systematic framework for video RM training. Our framework first sources high-quality, cost-efficient data via single-item binary annotations, then constructs preference pairs using a cross-prompt pairing strategy. Architecturally, we employ a Hierarchical Progressive Query Attention mechanism to enhance feature aggregation. Finally, we introduce a modified BT loss that explicitly accommodates win-tie scenarios. This approach regularizes the RM's score distribution for positive samples, providing more nuanced preference signals to alleviate over-focus on a small number of top-scoring samples. Our approach is validated on benchmarks evaluating physical plausibility, subject deformity, and semantic alignment, demonstrating improvements in direct RM evaluation metrics and in the efficacy of post-training on video generation models. Code and benchmark will be publicly available.
Accompaniment Prompt Adherence: A Measure for Evaluating Music Accompaniment Systems
Generative systems of musical accompaniments are rapidly growing, yet there are no standardized metrics to evaluate how well generations align with the conditional audio prompt. We introduce a distribution-based measure called "Accompaniment Prompt Adherence" (APA), and validate it through objective experiments on synthetic data perturbations, and human listening tests. Results show that APA aligns well with human judgments of adherence and is discriminative to transformations that degrade adherence. We release a Python implementation of the metric using the widely adopted pre-trained CLAP embedding model, offering a valuable tool for evaluating and comparing accompaniment generation systems.
ASTAR-NTU solution to AudioMOS Challenge 2025 Track1
Evaluation of text-to-music systems is constrained by the cost and availability of collecting experts for assessment. AudioMOS 2025 Challenge track 1 is created to automatically predict music impression (MI) as well as text alignment (TA) between the prompt and the generated musical piece. This paper reports our winning system, which uses a dual-branch architecture with pre-trained MuQ and RoBERTa models as audio and text encoders. A cross-attention mechanism fuses the audio and text representations. For training, we reframe the MI and TA prediction as a classification task. To incorporate the ordinal nature of MOS scores, one-hot labels are converted to a soft distribution using a Gaussian kernel. On the official test set, a single model trained with this method achieves a system-level Spearman's Rank Correlation Coefficient (SRCC) of 0.991 for MI and 0.952 for TA, corresponding to a relative improvement of 21.21\% in MI SRCC and 31.47\% in TA SRCC over the challenge baseline.
Count The Notes: Histogram-Based Supervision for Automatic Music Transcription
Automatic Music Transcription (AMT) converts audio recordings into symbolic musical representations. Training deep neural networks (DNNs) for AMT typically requires strongly aligned training pairs with precise frame-level annotations. Since creating such datasets is costly and impractical for many musical contexts, weakly aligned approaches using segment-level annotations have gained traction. However, existing methods often rely on Dynamic Time Warping (DTW) or soft alignment loss functions, both of which still require local semantic correspondences, making them error-prone and computationally expensive. In this article, we introduce CountEM, a novel AMT framework that eliminates the need for explicit local alignment by leveraging note event histograms as supervision, enabling lighter computations and greater flexibility. Using an Expectation-Maximization (EM) approach, CountEM iteratively refines predictions based solely on note occurrence counts, significantly reducing annotation efforts while maintaining high transcription accuracy. Experiments on piano, guitar, and multi-instrument datasets demonstrate that CountEM matches or surpasses existing weakly supervised methods, improving AMT's robustness, scalability, and efficiency. Our project page is available at https://yoni-yaffe.github.io/count-the-notes.
GraphMuse: A Library for Symbolic Music Graph Processing
Graph Neural Networks (GNNs) have recently gained traction in symbolic music tasks, yet a lack of a unified framework impedes progress. Addressing this gap, we present GraphMuse, a graph processing framework and library that facilitates efficient music graph processing and GNN training for symbolic music tasks. Central to our contribution is a new neighbor sampling technique specifically targeted toward meaningful behavior in musical scores. Additionally, GraphMuse integrates hierarchical modeling elements that augment the expressivity and capabilities of graph networks for musical tasks. Experiments with two specific musical prediction tasks -- pitch spelling and cadence detection -- demonstrate significant performance improvement over previous methods. Our hope is that GraphMuse will lead to a boost in, and standardization of, symbolic music processing based on graph representations. The library is available at https://github.com/manoskary/graphmuse
Perception-Inspired Graph Convolution for Music Understanding Tasks
We propose a new graph convolutional block, called MusGConv, specifically designed for the efficient processing of musical score data and motivated by general perceptual principles. It focuses on two fundamental dimensions of music, pitch and rhythm, and considers both relative and absolute representations of these components. We evaluate our approach on four different musical understanding problems: monophonic voice separation, harmonic analysis, cadence detection, and composer identification which, in abstract terms, translate to different graph learning problems, namely, node classification, link prediction, and graph classification. Our experiments demonstrate that MusGConv improves the performance on three of the aforementioned tasks while being conceptually very simple and efficient. We interpret this as evidence that it is beneficial to include perception-informed processing of fundamental musical concepts when developing graph network applications on musical score data.
Optical Music Recognition of Jazz Lead Sheets
In this paper, we address the challenge of Optical Music Recognition (OMR) for handwritten jazz lead sheets, a widely used musical score type that encodes melody and chords. The task is challenging due to the presence of chords, a score component not handled by existing OMR systems, and the high variability and quality issues associated with handwritten images. Our contribution is two-fold. We present a novel dataset consisting of 293 handwritten jazz lead sheets of 163 unique pieces, amounting to 2021 total staves aligned with Humdrum **kern and MusicXML ground truth scores. We also supply synthetic score images generated from the ground truth. The second contribution is the development of an OMR model for jazz lead sheets. We discuss specific tokenisation choices related to our kind of data, and the advantages of using synthetic scores and pretrained models. We publicly release all code, data, and models.
Towards An Integrated Approach for Expressive Piano Performance Synthesis from Music Scores
This paper presents an integrated system that transforms symbolic music scores into expressive piano performance audio. By combining a Transformer-based Expressive Performance Rendering (EPR) model with a fine-tuned neural MIDI synthesiser, our approach directly generates expressive audio performances from score inputs. To the best of our knowledge, this is the first system to offer a streamlined method for converting score MIDI files lacking expression control into rich, expressive piano performances. We conducted experiments using subsets of the ATEPP dataset, evaluating the system with both objective metrics and subjective listening tests. Our system not only accurately reconstructs human-like expressiveness, but also captures the acoustic ambience of environments such as concert halls and recording studios. Additionally, the proposed system demonstrates its ability to achieve musical expressiveness while ensuring good audio quality in its outputs.
High-resolution Piano Transcription with Pedals by Regressing Onset and Offset Times
Automatic music transcription (AMT) is the task of transcribing audio recordings into symbolic representations. Recently, neural network-based methods have been applied to AMT, and have achieved state-of-the-art results. However, many previous systems only detect the onset and offset of notes frame-wise, so the transcription resolution is limited to the frame hop size. There is a lack of research on using different strategies to encode onset and offset targets for training. In addition, previous AMT systems are sensitive to the misaligned onset and offset labels of audio recordings. Furthermore, there are limited researches on sustain pedal transcription on large-scale datasets. In this article, we propose a high-resolution AMT system trained by regressing precise onset and offset times of piano notes. At inference, we propose an algorithm to analytically calculate the precise onset and offset times of piano notes and pedal events. We show that our AMT system is robust to the misaligned onset and offset labels compared to previous systems. Our proposed system achieves an onset F1 of 96.72% on the MAESTRO dataset, outperforming previous onsets and frames system of 94.80%. Our system achieves a pedal onset F1 score of 91.86\%, which is the first benchmark result on the MAESTRO dataset. We have released the source code and checkpoints of our work at https://github.com/bytedance/piano_transcription.
Evaluating Sample Utility for Data Selection by Mimicking Model Weights
Foundation models rely on large-scale web-crawled datasets, which frequently contain noisy data, biases, and irrelevant content. Existing data selection techniques typically use human heuristics, downstream evaluation datasets, or specialized scoring models, and can overlook samples' utility in the training process. Instead, we propose a new approach, Mimic Score, a data quality metric that uses a pretrained reference model as a guide to assess the usefulness of data samples for training a new model. It relies on the alignment between the gradient of the new model parameters and the vector pointing toward the reference model in weight space. Samples that misalign with this direction are considered low-value and can be filtered out. Motivated by the Mimic score, we develop Grad-Mimic, a data selection framework that identifies and prioritizes useful samples, automating the selection process to create effective filters. Empirically, using Mimic scores to guide model training results in consistent performance gains across six image datasets and enhances the performance of CLIP models. Moreover, Mimic scores and their associated filters improve upon existing filtering methods and offer accurate estimation of dataset quality.
PianoVAM: A Multimodal Piano Performance Dataset
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
MuChin: A Chinese Colloquial Description Benchmark for Evaluating Language Models in the Field of Music
The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced (https://github.com/CarlWangChina/MuChin/).
Roman Numeral Analysis with Graph Neural Networks: Onset-wise Predictions from Note-wise Features
Roman Numeral analysis is the important task of identifying chords and their functional context in pieces of tonal music. This paper presents a new approach to automatic Roman Numeral analysis in symbolic music. While existing techniques rely on an intermediate lossy representation of the score, we propose a new method based on Graph Neural Networks (GNNs) that enable the direct description and processing of each individual note in the score. The proposed architecture can leverage notewise features and interdependencies between notes but yield onset-wise representation by virtue of our novel edge contraction algorithm. Our results demonstrate that ChordGNN outperforms existing state-of-the-art models, achieving higher accuracy in Roman Numeral analysis on the reference datasets. In addition, we investigate variants of our model using proposed techniques such as NADE, and post-processing of the chord predictions. The full source code for this work is available at https://github.com/manoskary/chordgnn
UltraIF: Advancing Instruction Following from the Wild
Instruction-following made modern large language models (LLMs) helpful assistants. However, the key to taming LLMs on complex instructions remains mysterious, for that there are huge gaps between models trained by open-source community and those trained by leading companies. To bridge the gap, we propose a simple and scalable approach UltraIF for building LLMs that can follow complex instructions with open-source data. UltraIF first decomposes real-world user prompts into simpler queries, constraints, and corresponding evaluation questions for the constraints. Then, we train an UltraComposer to compose constraint-associated prompts with evaluation questions. This prompt composer allows us to synthesize complicated instructions as well as filter responses with evaluation questions. In our experiment, for the first time, we successfully align LLaMA-3.1-8B-Base to catch up with its instruct version on 5 instruction-following benchmarks without any benchmark information, using only 8B model as response generator and evaluator. The aligned model also achieved competitive scores on other benchmarks. Moreover, we also show that UltraIF could further improve LLaMA-3.1-8B-Instruct through self-alignment, motivating broader use cases for the method. Our code will be available at https://github.com/kkk-an/UltraIF.
Sheet Music Benchmark: Standardized Optical Music Recognition Evaluation
In this work, we introduce the Sheet Music Benchmark (SMB), a dataset of six hundred and eighty-five pages specifically designed to benchmark Optical Music Recognition (OMR) research. SMB encompasses a diverse array of musical textures, including monophony, pianoform, quartet, and others, all encoded in Common Western Modern Notation using the Humdrum **kern format. Alongside SMB, we introduce the OMR Normalized Edit Distance (OMR-NED), a new metric tailored explicitly for evaluating OMR performance. OMR-NED builds upon the widely-used Symbol Error Rate (SER), offering a fine-grained and detailed error analysis that covers individual musical elements such as note heads, beams, pitches, accidentals, and other critical notation features. The resulting numeric score provided by OMR-NED facilitates clear comparisons, enabling researchers and end-users alike to identify optimal OMR approaches. Our work thus addresses a long-standing gap in OMR evaluation, and we support our contributions with baseline experiments using standardized SMB dataset splits for training and assessing state-of-the-art methods.
Melody Is All You Need For Music Generation
We present the Melody Guided Music Generation (MMGen) model, the first novel approach using melody to guide the music generation that, despite a pretty simple method and extremely limited resources, achieves excellent performance. Specifically, we first align the melody with audio waveforms and their associated descriptions using the multimodal alignment module. Subsequently, we condition the diffusion module on the learned melody representations. This allows MMGen to generate music that matches the style of the provided audio while also producing music that reflects the content of the given text description. To address the scarcity of high-quality data, we construct a multi-modal dataset, MusicSet, which includes melody, text, and audio, and will be made publicly available. We conduct extensive experiments which demonstrate the superiority of the proposed model both in terms of experimental metrics and actual performance quality.
GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
SMUG-Explain: A Framework for Symbolic Music Graph Explanations
In this work, we present Score MUsic Graph (SMUG)-Explain, a framework for generating and visualizing explanations of graph neural networks applied to arbitrary prediction tasks on musical scores. Our system allows the user to visualize the contribution of input notes (and note features) to the network output, directly in the context of the musical score. We provide an interactive interface based on the music notation engraving library Verovio. We showcase the usage of SMUG-Explain on the task of cadence detection in classical music. All code is available on https://github.com/manoskary/SMUG-Explain.
Score Mismatching for Generative Modeling
We propose a new score-based model with one-step sampling. Previously, score-based models were burdened with heavy computations due to iterative sampling. For substituting the iterative process, we train a standalone generator to compress all the time steps with the gradient backpropagated from the score network. In order to produce meaningful gradients for the generator, the score network is trained to simultaneously match the real data distribution and mismatch the fake data distribution. This model has the following advantages: 1) For sampling, it generates a fake image with only one step forward. 2) For training, it only needs 10 diffusion steps.3) Compared with consistency model, it is free of the ill-posed problem caused by consistency loss. On the popular CIFAR-10 dataset, our model outperforms Consistency Model and Denoising Score Matching, which demonstrates the potential of the framework. We further provide more examples on the MINIST and LSUN datasets. The code is available on GitHub.
Sketching the Expression: Flexible Rendering of Expressive Piano Performance with Self-Supervised Learning
We propose a system for rendering a symbolic piano performance with flexible musical expression. It is necessary to actively control musical expression for creating a new music performance that conveys various emotions or nuances. However, previous approaches were limited to following the composer's guidelines of musical expression or dealing with only a part of the musical attributes. We aim to disentangle the entire musical expression and structural attribute of piano performance using a conditional VAE framework. It stochastically generates expressive parameters from latent representations and given note structures. In addition, we employ self-supervised approaches that force the latent variables to represent target attributes. Finally, we leverage a two-step encoder and decoder that learn hierarchical dependency to enhance the naturalness of the output. Experimental results show that our system can stably generate performance parameters relevant to the given musical scores, learn disentangled representations, and control musical attributes independently of each other.
Reconstructing Human Expressiveness in Piano Performances with a Transformer Network
Capturing intricate and subtle variations in human expressiveness in music performance using computational approaches is challenging. In this paper, we propose a novel approach for reconstructing human expressiveness in piano performance with a multi-layer bi-directional Transformer encoder. To address the needs for large amounts of accurately captured and score-aligned performance data in training neural networks, we use transcribed scores obtained from an existing transcription model to train our model. We integrate pianist identities to control the sampling process and explore the ability of our system to model variations in expressiveness for different pianists. The system is evaluated through statistical analysis of generated expressive performances and a listening test. Overall, the results suggest that our method achieves state-of-the-art in generating human-like piano performances from transcribed scores, while fully and consistently reconstructing human expressiveness poses further challenges.
PianoMotion10M: Dataset and Benchmark for Hand Motion Generation in Piano Performance
Recently, artificial intelligence techniques for education have been received increasing attentions, while it still remains an open problem to design the effective music instrument instructing systems. Although key presses can be directly derived from sheet music, the transitional movements among key presses require more extensive guidance in piano performance. In this work, we construct a piano-hand motion generation benchmark to guide hand movements and fingerings for piano playing. To this end, we collect an annotated dataset, PianoMotion10M, consisting of 116 hours of piano playing videos from a bird's-eye view with 10 million annotated hand poses. We also introduce a powerful baseline model that generates hand motions from piano audios through a position predictor and a position-guided gesture generator. Furthermore, a series of evaluation metrics are designed to assess the performance of the baseline model, including motion similarity, smoothness, positional accuracy of left and right hands, and overall fidelity of movement distribution. Despite that piano key presses with respect to music scores or audios are already accessible, PianoMotion10M aims to provide guidance on piano fingering for instruction purposes. The source code and dataset can be accessed at https://github.com/agnJason/PianoMotion10M.
Synthetic-Powered Predictive Inference
Conformal prediction is a framework for predictive inference with a distribution-free, finite-sample guarantee. However, it tends to provide uninformative prediction sets when calibration data are scarce. This paper introduces Synthetic-powered predictive inference (SPI), a novel framework that incorporates synthetic data -- e.g., from a generative model -- to improve sample efficiency. At the core of our method is a score transporter: an empirical quantile mapping that aligns nonconformity scores from trusted, real data with those from synthetic data. By carefully integrating the score transporter into the calibration process, SPI provably achieves finite-sample coverage guarantees without making any assumptions about the real and synthetic data distributions. When the score distributions are well aligned, SPI yields substantially tighter and more informative prediction sets than standard conformal prediction. Experiments on image classification -- augmenting data with synthetic diffusion-model generated images -- and on tabular regression demonstrate notable improvements in predictive efficiency in data-scarce settings.
CLaMP 3: Universal Music Information Retrieval Across Unaligned Modalities and Unseen Languages
CLaMP 3 is a unified framework developed to address challenges of cross-modal and cross-lingual generalization in music information retrieval. Using contrastive learning, it aligns all major music modalities--including sheet music, performance signals, and audio recordings--with multilingual text in a shared representation space, enabling retrieval across unaligned modalities with text as a bridge. It features a multilingual text encoder adaptable to unseen languages, exhibiting strong cross-lingual generalization. Leveraging retrieval-augmented generation, we curated M4-RAG, a web-scale dataset consisting of 2.31 million music-text pairs. This dataset is enriched with detailed metadata that represents a wide array of global musical traditions. To advance future research, we release WikiMT-X, a benchmark comprising 1,000 triplets of sheet music, audio, and richly varied text descriptions. Experiments show that CLaMP 3 achieves state-of-the-art performance on multiple MIR tasks, significantly surpassing previous strong baselines and demonstrating excellent generalization in multimodal and multilingual music contexts.
Multidimensional Rubric-oriented Reward Model Learning via Geometric Projection Reference Constraints
The integration of large language models (LLMs) into medical practice holds transformative potential, yet their real-world clinical utility remains limited by critical alignment challenges: (1) a disconnect between static evaluation benchmarks and dynamic clinical cognitive needs, (2) difficulties in adapting to evolving, multi-source medical standards, and (3) the inability of conventional reward models to capture nuanced, multi-dimensional medical quality criteria. To address these gaps, we propose MR-RML (Multidimensional Rubric-oriented Reward Model Learning) via GPRC (Geometric Projection Reference Constraints), a novel alignment framework that integrates medical standards into a structured "Dimensions-Scenarios-Disciplines" matrix to guide data generation and model optimization. MR-RML introduces three core innovations: (1) a "Dimensions-Scenarios-Disciplines" medical standard system that embeds domain standards into the full training pipeline; (2) an independent multi-dimensional reward model that decomposes evaluation criteria, shifting from real-time rubric-based scoring to internalized reward modeling for improved consistency and cost-efficiency; (3) geometric projection reference constraints that transform medical cognitive logic into mathematical regularization, aligning scoring gradients with clinical reasoning and enabling synthetic data-driven training. Through extensive evaluations on the authoritative medical benchmark Healthbench, our method yields substantial performance gains over the base LLM Qwen-32B (45% on the full subset and 85% on Hard subset, respectively). It achieves a SOTA among open-source LLMs with scores of 62.7 (full subset) and 44.7 (hard subset), while also outperforming the majority of closed-source models.
SyMuPe: Affective and Controllable Symbolic Music Performance
Emotions are fundamental to the creation and perception of music performances. However, achieving human-like expression and emotion through machine learning models for performance rendering remains a challenging task. In this work, we present SyMuPe, a novel framework for developing and training affective and controllable symbolic piano performance models. Our flagship model, PianoFlow, uses conditional flow matching trained to solve diverse multi-mask performance inpainting tasks. By design, it supports both unconditional generation and infilling of music performance features. For training, we use a curated, cleaned dataset of 2,968 hours of aligned musical scores and expressive MIDI performances. For text and emotion control, we integrate a piano performance emotion classifier and tune PianoFlow with the emotion-weighted Flan-T5 text embeddings provided as conditional inputs. Objective and subjective evaluations against transformer-based baselines and existing models show that PianoFlow not only outperforms other approaches, but also achieves performance quality comparable to that of human-recorded and transcribed MIDI samples. For emotion control, we present and analyze samples generated under different text conditioning scenarios. The developed model can be integrated into interactive applications, contributing to the creation of more accessible and engaging music performance systems.
Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance
As Learning-to-Rank (LTR) approaches primarily seek to improve ranking quality, their output scores are not scale-calibrated by design. This fundamentally limits LTR usage in score-sensitive applications. Though a simple multi-objective approach that combines a regression and a ranking objective can effectively learn scale-calibrated scores, we argue that the two objectives are not necessarily compatible, which makes the trade-off less ideal for either of them. In this paper, we propose a practical regression compatible ranking (RCR) approach that achieves a better trade-off, where the two ranking and regression components are proved to be mutually aligned. Although the same idea applies to ranking with both binary and graded relevance, we mainly focus on binary labels in this paper. We evaluate the proposed approach on several public LTR benchmarks and show that it consistently achieves either best or competitive result in terms of both regression and ranking metrics, and significantly improves the Pareto frontiers in the context of multi-objective optimization. Furthermore, we evaluated the proposed approach on YouTube Search and found that it not only improved the ranking quality of the production pCTR model, but also brought gains to the click prediction accuracy. The proposed approach has been successfully deployed in the YouTube production system.
Playing Technique Detection by Fusing Note Onset Information in Guzheng Performance
The Guzheng is a kind of traditional Chinese instruments with diverse playing techniques. Instrument playing techniques (IPT) play an important role in musical performance. However, most of the existing works for IPT detection show low efficiency for variable-length audio and provide no assurance in the generalization as they rely on a single sound bank for training and testing. In this study, we propose an end-to-end Guzheng playing technique detection system using Fully Convolutional Networks that can be applied to variable-length audio. Because each Guzheng playing technique is applied to a note, a dedicated onset detector is trained to divide an audio into several notes and its predictions are fused with frame-wise IPT predictions. During fusion, we add the IPT predictions frame by frame inside each note and get the IPT with the highest probability within each note as the final output of that note. We create a new dataset named GZ_IsoTech from multiple sound banks and real-world recordings for Guzheng performance analysis. Our approach achieves 87.97% in frame-level accuracy and 80.76% in note-level F1-score, outperforming existing works by a large margin, which indicates the effectiveness of our proposed method in IPT detection.
FiloBass: A Dataset and Corpus Based Study of Jazz Basslines
We present FiloBass: a novel corpus of music scores and annotations which focuses on the important but often overlooked role of the double bass in jazz accompaniment. Inspired by recent work that sheds light on the role of the soloist, we offer a collection of 48 manually verified transcriptions of professional jazz bassists, comprising over 50,000 note events, which are based on the backing tracks used in the FiloSax dataset. For each recording we provide audio stems, scores, performance-aligned MIDI and associated metadata for beats, downbeats, chord symbols and markers for musical form. We then use FiloBass to enrich our understanding of jazz bass lines, by conducting a corpus-based musical analysis with a contrastive study of existing instructional methods. Together with the original FiloSax dataset, our work represents a significant step toward a fully annotated performance dataset for a jazz quartet setting. By illuminating the critical role of the bass in jazz, this work contributes to a more nuanced and comprehensive understanding of the genre.
DiffRhythm 2: Efficient and High Fidelity Song Generation via Block Flow Matching
Generating full-length, high-quality songs is challenging, as it requires maintaining long-term coherence both across text and music modalities and within the music modality itself. Existing non-autoregressive (NAR) frameworks, while capable of producing high-quality songs, often struggle with the alignment between lyrics and vocal. Concurrently, catering to diverse musical preferences necessitates reinforcement learning from human feedback (RLHF). However, existing methods often rely on merging multiple models during multi-preference optimization, which results in significant performance degradation. To address these challenges, we introduce DiffRhythm 2, an end-to-end framework designed for high-fidelity, controllable song generation. To tackle the lyric alignment problem, DiffRhythm 2 employs a semi-autoregressive architecture based on block flow matching. This design enables faithful alignment of lyrics to singing vocals without relying on external labels and constraints, all while preserving the high generation quality and efficiency of NAR models. To make this framework computationally tractable for long sequences, we implement a music variational autoencoder (VAE) that achieves a low frame rate of 5 Hz while still enabling high-fidelity audio reconstruction. In addition, to overcome the limitations of multi-preference optimization in RLHF, we propose cross-pair preference optimization. This method effectively mitigates the performance drop typically associated with model merging, allowing for more robust optimization across diverse human preferences. We further enhance musicality and structural coherence by introducing stochastic block representation alignment loss.
SCORE: A Semantic Evaluation Framework for Generative Document Parsing
Multi-modal generative document parsing systems challenge traditional evaluation: unlike deterministic OCR or layout models, they often produce semantically correct yet structurally divergent outputs. Conventional metrics-CER, WER, IoU, or TEDS-misclassify such diversity as error, penalizing valid interpretations and obscuring system behavior. We introduce SCORE (Structural and COntent Robust Evaluation), an interpretation-agnostic framework that integrates (i) adjusted edit distance for robust content fidelity, (ii) token-level diagnostics to distinguish hallucinations from omissions, (iii) table evaluation with spatial tolerance and semantic alignment, and (iv) hierarchy-aware consistency checks. Together, these dimensions enable evaluation that embraces representational diversity while enforcing semantic rigor. Across 1,114 pages spanning a holistic benchmark and a field dataset, SCORE consistently revealed cross-dataset performance patterns missed by standard metrics. In 2-5% of pages with ambiguous table structures, traditional metrics penalized systems by 12-25% on average, leading to distorted rankings. SCORE corrected these cases, recovering equivalence between alternative but valid interpretations. Moreover, by normalizing generative outputs into a format-agnostic representation, SCORE reproduces traditional scores (e.g., table F1 up to 0.93) without requiring object-detection pipelines, demonstrating that generative parsing alone suffices for comprehensive evaluation. By exposing how interpretive diversity impacts evaluation outcomes and providing multi-dimensional, interpretable diagnostics, SCORE establishes foundational principles for semantically grounded, fair, and practical benchmarking of modern document parsing systems.
WhisQ: Cross-Modal Representation Learning for Text-to-Music MOS Prediction
Mean Opinion Score (MOS) prediction for text to music systems requires evaluating both overall musical quality and text prompt alignment. This paper introduces WhisQ, a multimodal architecture that addresses this dual-assessment challenge through sequence level co-attention and optimal transport regularization. WhisQ employs the Whisper Base pretrained model for temporal audio encoding and Qwen 3, a 0.6B Small Language Model (SLM), for text encoding, with both maintaining sequence structure for fine grained cross-modal modeling. The architecture features specialized prediction pathways: OMQ is predicted from pooled audio embeddings, while TA leverages bidirectional sequence co-attention between audio and text. Sinkhorn optimal transport loss further enforce semantic alignment in the shared embedding space. On the MusicEval Track-1 dataset, WhisQ achieves substantial improvements over the baseline: 7% improvement in Spearman correlation for OMQ and 14% for TA. Ablation studies reveal that optimal transport regularization provides the largest performance gain (10% SRCC improvement), demonstrating the importance of explicit cross-modal alignment for text-to-music evaluation.
Pianist Transformer: Towards Expressive Piano Performance Rendering via Scalable Self-Supervised Pre-Training
Existing methods for expressive music performance rendering rely on supervised learning over small labeled datasets, which limits scaling of both data volume and model size, despite the availability of vast unlabeled music, as in vision and language. To address this gap, we introduce Pianist Transformer, with four key contributions: 1) a unified Musical Instrument Digital Interface (MIDI) data representation for learning the shared principles of musical structure and expression without explicit annotation; 2) an efficient asymmetric architecture, enabling longer contexts and faster inference without sacrificing rendering quality; 3) a self-supervised pre-training pipeline with 10B tokens and 135M-parameter model, unlocking data and model scaling advantages for expressive performance rendering; 4) a state-of-the-art performance model, which achieves strong objective metrics and human-level subjective ratings. Overall, Pianist Transformer establishes a scalable path toward human-like performance synthesis in the music domain.
VisionScores -- A system-segmented image score dataset for deep learning tasks
VisionScores presents a novel proposal being the first system-segmented image score dataset, aiming to offer structure-rich, high information-density images for machine and deep learning tasks. Delimited to two-handed piano pieces, it was built to consider not only certain graphic similarity but also composition patterns, as this creative process is highly instrument-dependent. It provides two scenarios in relation to composer and composition type. The first, formed by 14k samples, considers works from different authors but the same composition type, specifically, Sonatinas. The latter, consisting of 10.8K samples, presents the opposite case, various composition types from the same author, being the one selected Franz Liszt. All of the 24.8k samples are formatted as grayscale jpg images of 128 times 512 pixels. VisionScores supplies the users not only the formatted samples but the systems' order and pieces' metadata. Moreover, unsegmented full-page scores and the pre-formatted images are included for further analysis.
Denoising Likelihood Score Matching for Conditional Score-based Data Generation
Many existing conditional score-based data generation methods utilize Bayes' theorem to decompose the gradients of a log posterior density into a mixture of scores. These methods facilitate the training procedure of conditional score models, as a mixture of scores can be separately estimated using a score model and a classifier. However, our analysis indicates that the training objectives for the classifier in these methods may lead to a serious score mismatch issue, which corresponds to the situation that the estimated scores deviate from the true ones. Such an issue causes the samples to be misled by the deviated scores during the diffusion process, resulting in a degraded sampling quality. To resolve it, we formulate a novel training objective, called Denoising Likelihood Score Matching (DLSM) loss, for the classifier to match the gradients of the true log likelihood density. Our experimental evidence shows that the proposed method outperforms the previous methods on both Cifar-10 and Cifar-100 benchmarks noticeably in terms of several key evaluation metrics. We thus conclude that, by adopting DLSM, the conditional scores can be accurately modeled, and the effect of the score mismatch issue is alleviated.
CMI-Bench: A Comprehensive Benchmark for Evaluating Music Instruction Following
Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
The trade-off between robustness and accuracy has been widely studied in the adversarial literature. Although still controversial, the prevailing view is that this trade-off is inherent, either empirically or theoretically. Thus, we dig for the origin of this trade-off in adversarial training and find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance -- an overcorrection towards smoothness. Given this, we advocate employing local equivariance to describe the ideal behavior of a robust model, leading to a self-consistent robust error named SCORE. By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty via robust optimization. By simply substituting KL divergence with variants of distance metrics, SCORE can be efficiently minimized. Empirically, our models achieve top-rank performance on RobustBench under AutoAttack. Besides, SCORE provides instructive insights for explaining the overfitting phenomenon and semantic input gradients observed on robust models. Code is available at https://github.com/P2333/SCORE.
MuPT: A Generative Symbolic Music Pretrained Transformer
In this paper, we explore the application of Large Language Models (LLMs) to the pre-training of music. While the prevalent use of MIDI in music modeling is well-established, our findings suggest that LLMs are inherently more compatible with ABC Notation, which aligns more closely with their design and strengths, thereby enhancing the model's performance in musical composition. To address the challenges associated with misaligned measures from different tracks during generation, we propose the development of a Synchronized Multi-Track ABC Notation (SMT-ABC Notation), which aims to preserve coherence across multiple musical tracks. Our contributions include a series of models capable of handling up to 8192 tokens, covering 90\% of the symbolic music data in our training set. Furthermore, we explore the implications of the Symbolic Music Scaling Law (SMS Law) on model performance. The results indicate a promising direction for future research in music generation, offering extensive resources for community-led research through our open-source contributions.
The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications
By learning the gradient of smoothed data distributions, diffusion models can iteratively generate samples from complex distributions. The learned score function enables their generalization capabilities, but how the learned score relates to the score of the underlying data manifold remains largely unclear. Here, we aim to elucidate this relationship by comparing learned neural scores to the scores of two kinds of analytically tractable distributions: Gaussians and Gaussian mixtures. The simplicity of the Gaussian model makes it theoretically attractive, and we show that it admits a closed-form solution and predicts many qualitative aspects of sample generation dynamics. We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales, and supply both theoretical and empirical arguments to support this claim. Moreover, the Gaussian approximation empirically works for a larger range of noise scales than naive theory suggests it should, and is preferentially learned early in training. At smaller noise scales, we observe that learned scores are better described by a coarse-grained (Gaussian mixture) approximation of training data than by the score of the training distribution, a finding consistent with generalization. Our findings enable us to precisely predict the initial phase of trained models' sampling trajectories through their Gaussian approximations. We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality (with a near state-of-the-art FID score of 1.93 on CIFAR-10 unconditional generation). This forms the foundation of a novel hybrid sampling method, termed analytical teleportation, which can seamlessly integrate with and accelerate existing samplers, including DPM-Solver-v3 and UniPC. Our findings suggest ways to improve the design and training of diffusion models.
Singing voice synthesis based on frame-level sequence-to-sequence models considering vocal timing deviation
This paper proposes singing voice synthesis (SVS) based on frame-level sequence-to-sequence models considering vocal timing deviation. In SVS, it is essential to synchronize the timing of singing with temporal structures represented by scores, taking into account that there are differences between actual vocal timing and note start timing. In many SVS systems including our previous work, phoneme-level score features are converted into frame-level ones on the basis of phoneme boundaries obtained by external aligners to take into account vocal timing deviations. Therefore, the sound quality is affected by the aligner accuracy in this system. To alleviate this problem, we introduce an attention mechanism with frame-level features. In the proposed system, the attention mechanism absorbs alignment errors in phoneme boundaries. Additionally, we evaluate the system with pseudo-phoneme-boundaries defined by heuristic rules based on musical scores when there is no aligner. The experimental results show the effectiveness of the proposed system.
Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models
The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.
Solving Inverse Problems with Score-Based Generative Priors learned from Noisy Data
We present SURE-Score: an approach for learning score-based generative models using training samples corrupted by additive Gaussian noise. When a large training set of clean samples is available, solving inverse problems via score-based (diffusion) generative models trained on the underlying fully-sampled data distribution has recently been shown to outperform end-to-end supervised deep learning. In practice, such a large collection of training data may be prohibitively expensive to acquire in the first place. In this work, we present an approach for approximately learning a score-based generative model of the clean distribution, from noisy training data. We formulate and justify a novel loss function that leverages Stein's unbiased risk estimate to jointly denoise the data and learn the score function via denoising score matching, while using only the noisy samples. We demonstrate the generality of SURE-Score by learning priors and applying posterior sampling to ill-posed inverse problems in two practical applications from different domains: compressive wireless multiple-input multiple-output channel estimation and accelerated 2D multi-coil magnetic resonance imaging reconstruction, where we demonstrate competitive reconstruction performance when learning at signal-to-noise ratio values of 0 and 10 dB, respectively.
Stem-JEPA: A Joint-Embedding Predictive Architecture for Musical Stem Compatibility Estimation
This paper explores the automated process of determining stem compatibility by identifying audio recordings of single instruments that blend well with a given musical context. To tackle this challenge, we present Stem-JEPA, a novel Joint-Embedding Predictive Architecture (JEPA) trained on a multi-track dataset using a self-supervised learning approach. Our model comprises two networks: an encoder and a predictor, which are jointly trained to predict the embeddings of compatible stems from the embeddings of a given context, typically a mix of several instruments. Training a model in this manner allows its use in estimating stem compatibility - retrieving, aligning, or generating a stem to match a given mix - or for downstream tasks such as genre or key estimation, as the training paradigm requires the model to learn information related to timbre, harmony, and rhythm. We evaluate our model's performance on a retrieval task on the MUSDB18 dataset, testing its ability to find the missing stem from a mix and through a subjective user study. We also show that the learned embeddings capture temporal alignment information and, finally, evaluate the representations learned by our model on several downstream tasks, highlighting that they effectively capture meaningful musical features.
MAGR: Manifold-Aligned Graph Regularization for Continual Action Quality Assessment
Action Quality Assessment (AQA) evaluates diverse skills but models struggle with non-stationary data. We propose Continual AQA (CAQA) to refine models using sparse new data. Feature replay preserves memory without storing raw inputs. However, the misalignment between static old features and the dynamically changing feature manifold causes severe catastrophic forgetting. To address this novel problem, we propose Manifold-Aligned Graph Regularization (MAGR), which first aligns deviated old features to the current feature manifold, ensuring representation consistency. It then constructs a graph jointly arranging old and new features aligned with quality scores. Experiments show MAGR outperforms recent strong baselines with up to 6.56%, 5.66%, 15.64%, and 9.05% correlation gains on the MTL-AQA, FineDiving, UNLV-Dive, and JDM-MSA split datasets, respectively. This validates MAGR for continual assessment challenges arising from non-stationary skill variations.
MusicRL: Aligning Music Generation to Human Preferences
We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as "upbeat work-out music" can map to a retro guitar solo or a techno pop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM (Agostinelli et al., 2023) model of discrete audio tokens finetuned with reinforcement learning to maximise sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and quality only account for a part of it. This underscores the prevalence of subjectivity in musical appreciation and calls for further involvement of human listeners in the finetuning of music generation models.
Steering Autoregressive Music Generation with Recursive Feature Machines
Controllable music generation remains a significant challenge, with existing methods often requiring model retraining or introducing audible artifacts. We introduce MusicRFM, a framework that adapts Recursive Feature Machines (RFMs) to enable fine-grained, interpretable control over frozen, pre-trained music models by directly steering their internal activations. RFMs analyze a model's internal gradients to produce interpretable "concept directions", or specific axes in the activation space that correspond to musical attributes like notes or chords. We first train lightweight RFM probes to discover these directions within MusicGen's hidden states; then, during inference, we inject them back into the model to guide the generation process in real-time without per-step optimization. We present advanced mechanisms for this control, including dynamic, time-varying schedules and methods for the simultaneous enforcement of multiple musical properties. Our method successfully navigates the trade-off between control and generation quality: we can increase the accuracy of generating a target musical note from 0.23 to 0.82, while text prompt adherence remains within approximately 0.02 of the unsteered baseline, demonstrating effective control with minimal impact on prompt fidelity. We release code to encourage further exploration on RFMs in the music domain.
Enhancing Reward Models for High-quality Image Generation: Beyond Text-Image Alignment
Contemporary image generation systems have achieved high fidelity and superior aesthetic quality beyond basic text-image alignment. However, existing evaluation frameworks have failed to evolve in parallel. This study reveals that human preference reward models fine-tuned based on CLIP and BLIP architectures have inherent flaws: they inappropriately assign low scores to images with rich details and high aesthetic value, creating a significant discrepancy with actual human aesthetic preferences. To address this issue, we design a novel evaluation score, ICT (Image-Contained-Text) score, that achieves and surpasses the objectives of text-image alignment by assessing the degree to which images represent textual content. Building upon this foundation, we further train an HP (High-Preference) score model using solely the image modality to enhance image aesthetics and detail quality while maintaining text-image alignment. Experiments demonstrate that the proposed evaluation model improves scoring accuracy by over 10\% compared to existing methods, and achieves significant results in optimizing state-of-the-art text-to-image models. This research provides theoretical and empirical support for evolving image generation technology toward higher-order human aesthetic preferences. Code is available at https://github.com/BarretBa/ICTHP.
Auto-Regressive vs Flow-Matching: a Comparative Study of Modeling Paradigms for Text-to-Music Generation
Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM
Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval
A range of applications of multi-modal music information retrieval is centred around the problem of connecting large collections of sheet music (images) to corresponding audio recordings, that is, identifying pairs of audio and score excerpts that refer to the same musical content. One of the typical and most recent approaches to this task employs cross-modal deep learning architectures to learn joint embedding spaces that link the two distinct modalities - audio and sheet music images. While there has been steady improvement on this front over the past years, a number of open problems still prevent large-scale employment of this methodology. In this article we attempt to provide an insightful examination of the current developments on audio-sheet music retrieval via deep learning methods. We first identify a set of main challenges on the road towards robust and large-scale cross-modal music retrieval in real scenarios. We then highlight the steps we have taken so far to address some of these challenges, documenting step-by-step improvement along several dimensions. We conclude by analysing the remaining challenges and present ideas for solving these, in order to pave the way to a unified and robust methodology for cross-modal music retrieval.
Unified Cross-modal Translation of Score Images, Symbolic Music, and Performance Audio
Music exists in various modalities, such as score images, symbolic scores, MIDI, and audio. Translations between each modality are established as core tasks of music information retrieval, such as automatic music transcription (audio-to-MIDI) and optical music recognition (score image to symbolic score). However, most past work on multimodal translation trains specialized models on individual translation tasks. In this paper, we propose a unified approach, where we train a general-purpose model on many translation tasks simultaneously. Two key factors make this unified approach viable: a new large-scale dataset and the tokenization of each modality. Firstly, we propose a new dataset that consists of more than 1,300 hours of paired audio-score image data collected from YouTube videos, which is an order of magnitude larger than any existing music modal translation datasets. Secondly, our unified tokenization framework discretizes score images, audio, MIDI, and MusicXML into a sequence of tokens, enabling a single encoder-decoder Transformer to tackle multiple cross-modal translation as one coherent sequence-to-sequence task. Experimental results confirm that our unified multitask model improves upon single-task baselines in several key areas, notably reducing the symbol error rate for optical music recognition from 24.58% to a state-of-the-art 13.67%, while similarly substantial improvements are observed across the other translation tasks. Notably, our approach achieves the first successful score-image-conditioned audio generation, marking a significant breakthrough in cross-modal music generation.
Singing Timbre Popularity Assessment Based on Multimodal Large Foundation Model
Automated singing assessment is crucial for education and entertainment. However, existing systems face two fundamental limitations: reliance on reference tracks, which stifles creative expression, and the simplification of complex performances into non-diagnostic scores based solely on pitch and rhythm. We advocate for a shift from discriminative to descriptive evaluation, creating a complete ecosystem for reference-free, multi-dimensional assessment. First, we introduce Sing-MD, a large-scale dataset annotated by experts across four dimensions: breath control, timbre quality, emotional expression, and vocal technique. Our analysis reveals significant annotation inconsistencies among experts, challenging the validity of traditional accuracy-based metrics. Second, addressing the memory limitations of Multimodal Large Language Models (MLLMs) in analyzing full-length songs, we propose VocalVerse. This efficient hybrid architecture leverages a lightweight acoustic encoder to model global performance features and long-term dependencies. Third, to address automated metric shortcomings, we establish the H-TPR (Human-in-the-loop Tiered Perceptual Ranking) benchmark, which evaluates a model's ability to generate perceptually valid rankings rather than predicting noisy ground-truth scores.
End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-to-Character Recognition Model
Time-aligned lyrics can enrich the music listening experience by enabling karaoke, text-based song retrieval and intra-song navigation, and other applications. Compared to text-to-speech alignment, lyrics alignment remains highly challenging, despite many attempts to combine numerous sub-modules including vocal separation and detection in an effort to break down the problem. Furthermore, training required fine-grained annotations to be available in some form. Here, we present a novel system based on a modified Wave-U-Net architecture, which predicts character probabilities directly from raw audio using learnt multi-scale representations of the various signal components. There are no sub-modules whose interdependencies need to be optimized. Our training procedure is designed to work with weak, line-level annotations available in the real world. With a mean alignment error of 0.35s on a standard dataset our system outperforms the state-of-the-art by an order of magnitude.
FlowDec: A flow-based full-band general audio codec with high perceptual quality
We propose FlowDec, a neural full-band audio codec for general audio sampled at 48 kHz that combines non-adversarial codec training with a stochastic postfilter based on a novel conditional flow matching method. Compared to the prior work ScoreDec which is based on score matching, we generalize from speech to general audio and move from 24 kbit/s to as low as 4 kbit/s, while improving output quality and reducing the required postfilter DNN evaluations from 60 to 6 without any fine-tuning or distillation techniques. We provide theoretical insights and geometric intuitions for our approach in comparison to ScoreDec as well as another recent work that uses flow matching, and conduct ablation studies on our proposed components. We show that FlowDec is a competitive alternative to the recent GAN-dominated stream of neural codecs, achieving FAD scores better than those of the established GAN-based codec DAC and listening test scores that are on par, and producing qualitatively more natural reconstructions for speech and harmonic structures in music.
JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
WildScore: Benchmarking MLLMs in-the-Wild Symbolic Music Reasoning
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, their reasoning abilities in the multimodal symbolic music domain remain largely unexplored. We introduce WildScore, the first in-the-wild multimodal symbolic music reasoning and analysis benchmark, designed to evaluate MLLMs' capacity to interpret real-world music scores and answer complex musicological queries. Each instance in WildScore is sourced from genuine musical compositions and accompanied by authentic user-generated questions and discussions, capturing the intricacies of practical music analysis. To facilitate systematic evaluation, we propose a systematic taxonomy, comprising both high-level and fine-grained musicological ontologies. Furthermore, we frame complex music reasoning as multiple-choice question answering, enabling controlled and scalable assessment of MLLMs' symbolic music understanding. Empirical benchmarking of state-of-the-art MLLMs on WildScore reveals intriguing patterns in their visual-symbolic reasoning, uncovering both promising directions and persistent challenges for MLLMs in symbolic music reasoning and analysis. We release the dataset and code.
Score Augmentation for Diffusion Models
Diffusion models have achieved remarkable success in generative modeling. However, this study confirms the existence of overfitting in diffusion model training, particularly in data-limited regimes. To address this challenge, we propose Score Augmentation (ScoreAug), a novel data augmentation framework specifically designed for diffusion models. Unlike conventional augmentation approaches that operate on clean data, ScoreAug applies transformations to noisy data, aligning with the inherent denoising mechanism of diffusion. Crucially, ScoreAug further requires the denoiser to predict the augmentation of the original target. This design establishes an equivariant learning objective, enabling the denoiser to learn scores across varied denoising spaces, thereby realizing what we term score augmentation. We also theoretically analyze the relationship between scores in different spaces under general transformations. In experiments, we extensively validate ScoreAug on multiple benchmarks including CIFAR-10, FFHQ, AFHQv2, and ImageNet, with results demonstrating significant performance improvements over baselines. Notably, ScoreAug effectively mitigates overfitting across diverse scenarios, such as varying data scales and model capacities, while exhibiting stable convergence properties. Another advantage of ScoreAug over standard data augmentation lies in its ability to circumvent data leakage issues under certain conditions. Furthermore, we show that ScoreAug can be synergistically combined with traditional data augmentation techniques to achieve additional performance gains.
MusiXQA: Advancing Visual Music Understanding in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved remarkable visual reasoning abilities in natural images, text-rich documents, and graphic designs. However, their ability to interpret music sheets remains underexplored. To bridge this gap, we introduce MusiXQA, the first comprehensive dataset for evaluating and advancing MLLMs in music sheet understanding. MusiXQA features high-quality synthetic music sheets generated via MusiXTeX, with structured annotations covering note pitch and duration, chords, clefs, key/time signatures, and text, enabling diverse visual QA tasks. Through extensive evaluations, we reveal significant limitations of current state-of-the-art MLLMs in this domain. Beyond benchmarking, we developed Phi-3-MusiX, an MLLM fine-tuned on our dataset, achieving significant performance gains over GPT-based methods. The proposed dataset and model establish a foundation for future advances in MLLMs for music sheet understanding. Code, data, and model will be released upon acceptance.
A Quality-Guided Mixture of Score-Fusion Experts Framework for Human Recognition
Whole-body biometric recognition is a challenging multimodal task that integrates various biometric modalities, including face, gait, and body. This integration is essential for overcoming the limitations of unimodal systems. Traditionally, whole-body recognition involves deploying different models to process multiple modalities, achieving the final outcome by score-fusion (e.g., weighted averaging of similarity matrices from each model). However, these conventional methods may overlook the variations in score distributions of individual modalities, making it challenging to improve final performance. In this work, we present Quality-guided Mixture of score-fusion Experts (QME), a novel framework designed for improving whole-body biometric recognition performance through a learnable score-fusion strategy using a Mixture of Experts (MoE). We introduce a novel pseudo-quality loss for quality estimation with a modality-specific Quality Estimator (QE), and a score triplet loss to improve the metric performance. Extensive experiments on multiple whole-body biometric datasets demonstrate the effectiveness of our proposed approach, achieving state-of-the-art results across various metrics compared to baseline methods. Our method is effective for multimodal and multi-model, addressing key challenges such as model misalignment in the similarity score domain and variability in data quality.
Toward Human Centered Interactive Clinical Question Answering System
Unstructured clinical notes contain essential patient information but are challenging for physicians to search and interpret efficiently. Although large language models (LLMs) have shown promise in question answering (QA), most existing systems lack transparency, usability, and alignment with clinical workflows. This work introduces an interactive QA system that enables physicians to query clinical notes via text or voice and receive extractive answers highlighted directly in the note for traceability. The system was built using OpenAI models with zero-shot prompting and evaluated across multiple metrics, including exact string match, word overlap, SentenceTransformer similarity, and BERTScore. Results show that while exact match scores ranged from 47 to 62 percent, semantic similarity scores exceeded 87 percent, indicating strong contextual alignment even when wording varied. To assess usability, the system was also evaluated using simulated clinical personas. Seven diverse physician and nurse personas interacted with the system across scenario-based tasks and provided structured feedback. The evaluations highlighted strengths in intuitive design and answer accessibility, alongside opportunities for enhancing explanation clarity.
SongComposer: A Large Language Model for Lyric and Melody Composition in Song Generation
We present SongComposer, an innovative LLM designed for song composition. It could understand and generate melodies and lyrics in symbolic song representations, by leveraging the capability of LLM. Existing music-related LLM treated the music as quantized audio signals, while such implicit encoding leads to inefficient encoding and poor flexibility. In contrast, we resort to symbolic song representation, the mature and efficient way humans designed for music, and enable LLM to explicitly compose songs like humans. In practice, we design a novel tuple design to format lyric and three note attributes (pitch, duration, and rest duration) in the melody, which guarantees the correct LLM understanding of musical symbols and realizes precise alignment between lyrics and melody. To impart basic music understanding to LLM, we carefully collected SongCompose-PT, a large-scale song pretraining dataset that includes lyrics, melodies, and paired lyrics-melodies in either Chinese or English. After adequate pre-training, 10K carefully crafted QA pairs are used to empower the LLM with the instruction-following capability and solve diverse tasks. With extensive experiments, SongComposer demonstrates superior performance in lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation, outperforming advanced LLMs like GPT-4.
Anchored Preference Optimization and Contrastive Revisions: Addressing Underspecification in Alignment
Large Language Models (LLMs) are often aligned using contrastive alignment objectives and preference pair datasets. The interaction between model, paired data, and objective makes alignment a complicated procedure, sometimes producing subpar results. We study this and find that (i) preference data gives a better learning signal when the underlying responses are contrastive, and (ii) alignment objectives lead to better performance when they specify more control over the model during training. Based on these insights, we introduce Contrastive Learning from AI Revisions (CLAIR), a data-creation method which leads to more contrastive preference pairs, and Anchored Preference Optimization (APO), a controllable and more stable alignment objective. We align Llama-3-8B-Instruct using various comparable datasets and alignment objectives and measure MixEval-Hard scores, which correlate highly with human judgments. The CLAIR preferences lead to the strongest performance out of all datasets, and APO consistently outperforms less controllable objectives. Our best model, trained on 32K CLAIR preferences with APO, improves Llama-3-8B-Instruct by 7.65%, closing the gap with GPT4-turbo by 45%. Our code is available at https://github.com/ContextualAI/CLAIR_and_APO.
YingMusic-Singer: Zero-shot Singing Voice Synthesis and Editing with Annotation-free Melody Guidance
Singing Voice Synthesis (SVS) remains constrained in practical deployment due to its strong dependence on accurate phoneme-level alignment and manually annotated melody contours, requirements that are resource-intensive and hinder scalability. To overcome these limitations, we propose a melody-driven SVS framework capable of synthesizing arbitrary lyrics following any reference melody, without relying on phoneme-level alignment. Our method builds on a Diffusion Transformer (DiT) architecture, enhanced with a dedicated melody extraction module that derives melody representations directly from reference audio. To ensure robust melody encoding, we employ a teacher model to guide the optimization of the melody extractor, alongside an implicit alignment mechanism that enforces similarity distribution constraints for improved melodic stability and coherence. Additionally, we refine duration modeling using weakly annotated song data and introduce a Flow-GRPO reinforcement learning strategy with a multi-objective reward function to jointly enhance pronunciation clarity and melodic fidelity. Experiments show that our model achieves superior performance over existing approaches in both objective measures and subjective listening tests, especially in zero-shot and lyric adaptation settings, while maintaining high audio quality without manual annotation. This work offers a practical and scalable solution for advancing data-efficient singing voice synthesis. To support reproducibility, we release our inference code and model checkpoints.
Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music Generation Task
Benefiting from large-scale datasets and pre-trained models, the field of generative models has recently gained significant momentum. However, most datasets for symbolic music are very small, which potentially limits the performance of data-driven multimodal models. An intuitive solution to this problem is to leverage pre-trained models from other modalities (e.g., natural language) to improve the performance of symbolic music-related multimodal tasks. In this paper, we carry out the first study of generating complete and semantically consistent symbolic music scores from text descriptions, and explore the efficacy of using publicly available checkpoints (i.e., BERT, GPT-2, and BART) for natural language processing in the task of text-to-music generation. Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity. We analyse the capabilities and limitations of our model to better understand the potential of language-music models.
The GigaMIDI Dataset with Features for Expressive Music Performance Detection
The Musical Instrument Digital Interface (MIDI), introduced in 1983, revolutionized music production by allowing computers and instruments to communicate efficiently. MIDI files encode musical instructions compactly, facilitating convenient music sharing. They benefit Music Information Retrieval (MIR), aiding in research on music understanding, computational musicology, and generative music. The GigaMIDI dataset contains over 1.4 million unique MIDI files, encompassing 1.8 billion MIDI note events and over 5.3 million MIDI tracks. GigaMIDI is currently the largest collection of symbolic music in MIDI format available for research purposes under fair dealing. Distinguishing between non-expressive and expressive MIDI tracks is challenging, as MIDI files do not inherently make this distinction. To address this issue, we introduce a set of innovative heuristics for detecting expressive music performance. These include the Distinctive Note Velocity Ratio (DNVR) heuristic, which analyzes MIDI note velocity; the Distinctive Note Onset Deviation Ratio (DNODR) heuristic, which examines deviations in note onset times; and the Note Onset Median Metric Level (NOMML) heuristic, which evaluates onset positions relative to metric levels. Our evaluation demonstrates these heuristics effectively differentiate between non-expressive and expressive MIDI tracks. Furthermore, after evaluation, we create the most substantial expressive MIDI dataset, employing our heuristic, NOMML. This curated iteration of GigaMIDI encompasses expressively-performed instrument tracks detected by NOMML, containing all General MIDI instruments, constituting 31% of the GigaMIDI dataset, totalling 1,655,649 tracks.
Structured Uncertainty Similarity Score (SUSS): Learning a Probabilistic, Interpretable, Perceptual Metric Between Images
Perceptual similarity scores that align with human vision are critical for both training and evaluating computer vision models. Deep perceptual losses, such as LPIPS, achieve good alignment but rely on complex, highly non-linear discriminative features with unknown invariances, while hand-crafted measures like SSIM are interpretable but miss key perceptual properties. We introduce the Structured Uncertainty Similarity Score (SUSS); it models each image through a set of perceptual components, each represented by a structured multivariate Normal distribution. These are trained in a generative, self-supervised manner to assign high likelihood to human-imperceptible augmentations. The final score is a weighted sum of component log-probabilities with weights learned from human perceptual datasets. Unlike feature-based methods, SUSS learns image-specific linear transformations of residuals in pixel space, enabling transparent inspection through decorrelated residuals and sampling. SUSS aligns closely with human perceptual judgments, shows strong perceptual calibration across diverse distortion types, and provides localized, interpretable explanations of its similarity assessments. We further demonstrate stable optimization behavior and competitive performance when using SUSS as a perceptual loss for downstream imaging tasks.
Synchronize Dual Hands for Physics-Based Dexterous Guitar Playing
We present a novel approach to synthesize dexterous motions for physically simulated hands in tasks that require coordination between the control of two hands with high temporal precision. Instead of directly learning a joint policy to control two hands, our approach performs bimanual control through cooperative learning where each hand is treated as an individual agent. The individual policies for each hand are first trained separately, and then synchronized through latent space manipulation in a centralized environment to serve as a joint policy for two-hand control. By doing so, we avoid directly performing policy learning in the joint state-action space of two hands with higher dimensions, greatly improving the overall training efficiency. We demonstrate the effectiveness of our proposed approach in the challenging guitar-playing task. The virtual guitarist trained by our approach can synthesize motions from unstructured reference data of general guitar-playing practice motions, and accurately play diverse rhythms with complex chord pressing and string picking patterns based on the input guitar tabs that do not exist in the references. Along with this paper, we provide the motion capture data that we collected as the reference for policy training. Code is available at: https://pei-xu.github.io/guitar.
MusiConGen: Rhythm and Chord Control for Transformer-Based Text-to-Music Generation
Existing text-to-music models can produce high-quality audio with great diversity. However, textual prompts alone cannot precisely control temporal musical features such as chords and rhythm of the generated music. To address this challenge, we introduce MusiConGen, a temporally-conditioned Transformer-based text-to-music model that builds upon the pretrained MusicGen framework. Our innovation lies in an efficient finetuning mechanism, tailored for consumer-grade GPUs, that integrates automatically-extracted rhythm and chords as the condition signal. During inference, the condition can either be musical features extracted from a reference audio signal, or be user-defined symbolic chord sequence, BPM, and textual prompts. Our performance evaluation on two datasets -- one derived from extracted features and the other from user-created inputs -- demonstrates that MusiConGen can generate realistic backing track music that aligns well with the specified conditions. We open-source the code and model checkpoints, and provide audio examples online, https://musicongen.github.io/musicongen_demo/.
Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models
Aligning large language models (LLMs) with human values and intents critically involves the use of human or AI feedback. While dense feedback annotations are expensive to acquire and integrate, sparse feedback presents a structural design choice between ratings (e.g., score Response A on a scale of 1-7) and rankings (e.g., is Response A better than Response B?). In this work, we analyze the effect of this design choice for the alignment and evaluation of LLMs. We uncover an inconsistency problem wherein the preferences inferred from ratings and rankings significantly disagree 60% for both human and AI annotators. Our subsequent analysis identifies various facets of annotator biases that explain this phenomena, such as human annotators would rate denser responses higher while preferring accuracy during pairwise judgments. To our surprise, we also observe that the choice of feedback protocol also has a significant effect on the evaluation of aligned LLMs. In particular, we find that LLMs that leverage rankings data for alignment (say model X) are preferred over those that leverage ratings data (say model Y), with a rank-based evaluation protocol (is X/Y's response better than reference response?) but not with a rating-based evaluation protocol (score Rank X/Y's response on a scale of 1-7). Our findings thus shed light on critical gaps in methods for evaluating the real-world utility of language models and their strong dependence on the feedback protocol used for alignment. Our code and data are available at https://github.com/Hritikbansal/sparse_feedback.
Audio-to-Score Conversion Model Based on Whisper methodology
This thesis develops a Transformer model based on Whisper, which extracts melodies and chords from music audio and records them into ABC notation. A comprehensive data processing workflow is customized for ABC notation, including data cleansing, formatting, and conversion, and a mutation mechanism is implemented to increase the diversity and quality of training data. This thesis innovatively introduces the "Orpheus' Score", a custom notation system that converts music information into tokens, designs a custom vocabulary library, and trains a corresponding custom tokenizer. Experiments show that compared to traditional algorithms, the model has significantly improved accuracy and performance. While providing a convenient audio-to-score tool for music enthusiasts, this work also provides new ideas and tools for research in music information processing.
Can Brain Signals Reveal Inner Alignment with Human Languages?
Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced MTAM, a Multimodal Transformer Alignment Model, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at https://github.com/Jason-Qiu/EEG_Language_Alignment.
Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
CM^3: Calibrating Multimodal Recommendation
Alignment and uniformity are fundamental principles within the domain of contrastive learning. In recommender systems, prior work has established that optimizing the Bayesian Personalized Ranking (BPR) loss contributes to the objectives of alignment and uniformity. Specifically, alignment aims to draw together the representations of interacting users and items, while uniformity mandates a uniform distribution of user and item embeddings across a unit hypersphere. This study revisits the alignment and uniformity properties within the context of multimodal recommender systems, revealing a proclivity among extant models to prioritize uniformity to the detriment of alignment. Our hypothesis challenges the conventional assumption of equitable item treatment through a uniformity loss, proposing a more nuanced approach wherein items with similar multimodal attributes converge toward proximal representations within the hyperspheric manifold. Specifically, we leverage the inherent similarity between items' multimodal data to calibrate their uniformity distribution, thereby inducing a more pronounced repulsive force between dissimilar entities within the embedding space. A theoretical analysis elucidates the relationship between this calibrated uniformity loss and the conventional uniformity function. Moreover, to enhance the fusion of multimodal features, we introduce a Spherical B\'ezier method designed to integrate an arbitrary number of modalities while ensuring that the resulting fused features are constrained to the same hyperspherical manifold. Empirical evaluations conducted on five real-world datasets substantiate the superiority of our approach over competing baselines. We also shown that the proposed methods can achieve up to a 5.4% increase in NDCG@20 performance via the integration of MLLM-extracted features. Source code is available at: https://github.com/enoche/CM3.
On Diversified Preferences of Large Language Model Alignment
Aligning large language models (LLMs) with human preferences has been recognized as the key to improving LLMs' interaction quality. However, in this pluralistic world, human preferences can be diversified due to annotators' different tastes, which hinders the effectiveness of LLM alignment methods. This paper presents the first quantitative analysis of commonly used human feedback datasets to investigate the impact of diversified preferences on reward modeling. Our analysis reveals a correlation between the calibration performance of reward models (RMs) and the alignment performance of LLMs. We find that diversified preference data negatively affect the calibration performance of RMs on human-shared preferences, such as Harmless\&Helpful, thereby impairing the alignment performance of LLMs. To address the ineffectiveness, we propose a novel Multi-Objective Reward learning method (MORE) to enhance the calibration performance of RMs on shared preferences. We validate our findings by experiments on three models and five human preference datasets. Our method significantly improves the prediction calibration of RMs, leading to better alignment of the Alpaca-7B model with Harmless\&Helpful preferences. Furthermore, the connection between reward calibration and preference alignment performance suggests that calibration error can be adopted as a key metric for evaluating RMs. The open-source code and data are available at https://github.com/dunzeng/MORE.
Joint Estimation of Piano Dynamics and Metrical Structure with a Multi-task Multi-Scale Network
Estimating piano dynamic from audio recordings is a fundamental challenge in computational music analysis. In this paper, we propose an efficient multi-task network that jointly predicts dynamic levels, change points, beats, and downbeats from a shared latent representation. These four targets form the metrical structure of dynamics in the music score. Inspired by recent vocal dynamic research, we use a multi-scale network as the backbone, which takes Bark-scale specific loudness as the input feature. Compared to log-Mel as input, this reduces model size from 14.7 M to 0.5 M, enabling long sequential input. We use a 60-second audio length in audio segmentation, which doubled the length of beat tracking commonly used. Evaluated on the public MazurkaBL dataset, our model achieves state-of-the-art results across all tasks. This work sets a new benchmark for piano dynamic estimation and delivers a powerful and compact tool, paving the way for large-scale, resource-efficient analysis of musical expression.
SongEval: A Benchmark Dataset for Song Aesthetics Evaluation
Aesthetics serve as an implicit and important criterion in song generation tasks that reflect human perception beyond objective metrics. However, evaluating the aesthetics of generated songs remains a fundamental challenge, as the appreciation of music is highly subjective. Existing evaluation metrics, such as embedding-based distances, are limited in reflecting the subjective and perceptual aspects that define musical appeal. To address this issue, we introduce SongEval, the first open-source, large-scale benchmark dataset for evaluating the aesthetics of full-length songs. SongEval includes over 2,399 songs in full length, summing up to more than 140 hours, with aesthetic ratings from 16 professional annotators with musical backgrounds. Each song is evaluated across five key dimensions: overall coherence, memorability, naturalness of vocal breathing and phrasing, clarity of song structure, and overall musicality. The dataset covers both English and Chinese songs, spanning nine mainstream genres. Moreover, to assess the effectiveness of song aesthetic evaluation, we conduct experiments using SongEval to predict aesthetic scores and demonstrate better performance than existing objective evaluation metrics in predicting human-perceived musical quality.
Improving Perceptual Quality of Drum Transcription with the Expanded Groove MIDI Dataset
We introduce the Expanded Groove MIDI dataset (E-GMD), an automatic drum transcription (ADT) dataset that contains 444 hours of audio from 43 drum kits, making it an order of magnitude larger than similar datasets, and the first with human-performed velocity annotations. We use E-GMD to optimize classifiers for use in downstream generation by predicting expressive dynamics (velocity) and show with listening tests that they produce outputs with improved perceptual quality, despite similar results on classification metrics. Via the listening tests, we argue that standard classifier metrics, such as accuracy and F-measure score, are insufficient proxies of performance in downstream tasks because they do not fully align with the perceptual quality of generated outputs.
MERTech: Instrument Playing Technique Detection Using Self-Supervised Pretrained Model With Multi-Task Finetuning
Instrument playing techniques (IPTs) constitute a pivotal component of musical expression. However, the development of automatic IPT detection methods suffers from limited labeled data and inherent class imbalance issues. In this paper, we propose to apply a self-supervised learning model pre-trained on large-scale unlabeled music data and finetune it on IPT detection tasks. This approach addresses data scarcity and class imbalance challenges. Recognizing the significance of pitch in capturing the nuances of IPTs and the importance of onset in locating IPT events, we investigate multi-task finetuning with pitch and onset detection as auxiliary tasks. Additionally, we apply a post-processing approach for event-level prediction, where an IPT activation initiates an event only if the onset output confirms an onset in that frame. Our method outperforms prior approaches in both frame-level and event-level metrics across multiple IPT benchmark datasets. Further experiments demonstrate the efficacy of multi-task finetuning on each IPT class.
CultureMERT: Continual Pre-Training for Cross-Cultural Music Representation Learning
Recent advances in music foundation models have improved audio representation learning, yet their effectiveness across diverse musical traditions remains limited. We introduce CultureMERT-95M, a multi-culturally adapted foundation model developed to enhance cross-cultural music representation learning and understanding. To achieve this, we propose a two-stage continual pre-training strategy that integrates learning rate re-warming and re-decaying, enabling stable adaptation even with limited computational resources. Training on a 650-hour multi-cultural data mix, comprising Greek, Turkish, and Indian music traditions, results in an average improvement of 4.9% in ROC-AUC and AP across diverse non-Western music auto-tagging tasks, surpassing prior state-of-the-art, with minimal forgetting on Western-centric benchmarks. We further investigate task arithmetic, an alternative approach to multi-cultural adaptation that merges single-culture adapted models in the weight space. Task arithmetic performs on par with our multi-culturally trained model on non-Western auto-tagging tasks and shows no regression on Western datasets. Cross-cultural evaluation reveals that single-culture models transfer with varying effectiveness across musical traditions, whereas the multi-culturally adapted model achieves the best overall performance. To support research on world music representation learning, we publicly release CultureMERT-95M and CultureMERT-TA-95M, fostering the development of more culturally aware music foundation models.
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
The explosion of visual content available online underscores the requirement for an accurate machine assessor to robustly evaluate scores across diverse types of visual contents. While recent studies have demonstrated the exceptional potentials of large multi-modality models (LMMs) on a wide range of related fields, in this work, we explore how to teach them for visual rating aligned with human opinions. Observing that human raters only learn and judge discrete text-defined levels in subjective studies, we propose to emulate this subjective process and teach LMMs with text-defined rating levels instead of scores. The proposed Q-Align achieves state-of-the-art performance on image quality assessment (IQA), image aesthetic assessment (IAA), as well as video quality assessment (VQA) tasks under the original LMM structure. With the syllabus, we further unify the three tasks into one model, termed the OneAlign. In our experiments, we demonstrate the advantage of the discrete-level-based syllabus over direct-score-based variants for LMMs. Our code and the pre-trained weights are released at https://github.com/Q-Future/Q-Align.
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models
Music generation has attracted growing interest with the advancement of deep generative models. However, generating music conditioned on textual descriptions, known as text-to-music, remains challenging due to the complexity of musical structures and high sampling rate requirements. Despite the task's significance, prevailing generative models exhibit limitations in music quality, computational efficiency, and generalization. This paper introduces JEN-1, a universal high-fidelity model for text-to-music generation. JEN-1 is a diffusion model incorporating both autoregressive and non-autoregressive training. Through in-context learning, JEN-1 performs various generation tasks including text-guided music generation, music inpainting, and continuation. Evaluations demonstrate JEN-1's superior performance over state-of-the-art methods in text-music alignment and music quality while maintaining computational efficiency. Our demos are available at http://futureverse.com/research/jen/demos/jen1
The Flaw of Averages: Quantifying Uniformity of Performance on Benchmarks
Benchmarks shape scientific conclusions about model capabilities and steer model development. This creates a feedback loop: stronger benchmarks drive better models, and better models demand more discriminative benchmarks. Ensuring benchmark reliability is therefore essential for trustworthy evaluation and meaningful progress. In this work, we study benchmark reliability from a distributional perspective and introduce benchmark harmony, which measures how uniformly a model's performance is distributed across the subdomains of a benchmark. We posit that high harmony is a desirable benchmark property, indicating that the aggregate metric reflects uniform competence across subdomains. Across 19 multiple-choice benchmarks and five model families, we map each benchmark onto a mean-variance plane of harmony computed across models, where high mean and low variance signal more reliable evaluation. Our analysis shows that less harmonious benchmarks can give misleading results, since overall accuracy may be disproportionately influenced by specific subdomains. For instance, ARC-Easy is overwhelmed by questions on Biological Concepts, overshadowing other critical subdomains such as Geography, Physics, Chemistry, and Environmental Science. By recommending that harmony should be reported alongside accuracy, we reframe evaluation from simple performance averages to a more robust, distributionally reliable measurement of performance.
Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans
The evaluation of LLMs has so far focused primarily on how well they can perform different tasks such as reasoning, question-answering, paraphrasing, or translating. For most of these tasks, performance can be measured with objective metrics, such as the number of correct answers. However, other language features are not easily quantified. For example, arousal, concreteness, or gender associated with a given word, as well as the extent to which we experience words with senses and relate them to a specific sense. Those features have been studied for many years by psycholinguistics, conducting large-scale experiments with humans to produce ratings for thousands of words. This opens an opportunity to evaluate how well LLMs align with human ratings on these word features, taking advantage of existing studies that cover many different language features in a large number of words. In this paper, we evaluate the alignment of a representative group of LLMs with human ratings on two psycholinguistic datasets: the Glasgow and Lancaster norms. These datasets cover thirteen features over thousands of words. The results show that alignment is black{generally} better in the Glasgow norms evaluated (arousal, valence, dominance, concreteness, imageability, familiarity, and gender) than on the Lancaster norms evaluated (introceptive, gustatory, olfactory, haptic, auditory, and visual). This suggests a potential limitation of current LLMs in aligning with human sensory associations for words, which may be due to their lack of embodied cognition present in humans and illustrates the usefulness of evaluating LLMs with psycholinguistic datasets.
LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation
Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.
Transcription Is All You Need: Learning to Separate Musical Mixtures with Score as Supervision
Most music source separation systems require large collections of isolated sources for training, which can be difficult to obtain. In this work, we use musical scores, which are comparatively easy to obtain, as a weak label for training a source separation system. In contrast with previous score-informed separation approaches, our system does not require isolated sources, and score is used only as a training target, not required for inference. Our model consists of a separator that outputs a time-frequency mask for each instrument, and a transcriptor that acts as a critic, providing both temporal and frequency supervision to guide the learning of the separator. A harmonic mask constraint is introduced as another way of leveraging score information during training, and we propose two novel adversarial losses for additional fine-tuning of both the transcriptor and the separator. Results demonstrate that using score information outperforms temporal weak-labels, and adversarial structures lead to further improvements in both separation and transcription performance.
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric
Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.
Image2Struct: Benchmarking Structure Extraction for Vision-Language Models
We introduce Image2Struct, a benchmark to evaluate vision-language models (VLMs) on extracting structure from images. Our benchmark 1) captures real-world use cases, 2) is fully automatic and does not require human judgment, and 3) is based on a renewable stream of fresh data. In Image2Struct, VLMs are prompted to generate the underlying structure (e.g., LaTeX code or HTML) from an input image (e.g., webpage screenshot). The structure is then rendered to produce an output image (e.g., rendered webpage), which is compared against the input image to produce a similarity score. This round-trip evaluation allows us to quantitatively evaluate VLMs on tasks with multiple valid structures. We create a pipeline that downloads fresh data from active online communities upon execution and evaluates the VLMs without human intervention. We introduce three domains (Webpages, LaTeX, and Musical Scores) and use five image metrics (pixel similarity, cosine similarity between the Inception vectors, learned perceptual image patch similarity, structural similarity index measure, and earth mover similarity) that allow efficient and automatic comparison between pairs of images. We evaluate Image2Struct on 14 prominent VLMs and find that scores vary widely, indicating that Image2Struct can differentiate between the performances of different VLMs. Additionally, the best score varies considerably across domains (e.g., 0.402 on sheet music vs. 0.830 on LaTeX equations), indicating that Image2Struct contains tasks of varying difficulty. For transparency, we release the full results at https://crfm.stanford.edu/helm/image2struct/v1.0.1/.
Sample, Don't Search: Rethinking Test-Time Alignment for Language Models
Increasing test-time computation has emerged as a promising direction for improving language model performance, particularly in scenarios where model finetuning is impractical or impossible due to computational constraints or private model weights. However, existing test-time search methods using a reward model (RM) often degrade in quality as compute scales, due to the over-optimization of what are inherently imperfect reward proxies. We introduce QAlign, a new test-time alignment approach. As we scale test-time compute, QAlign converges to sampling from the optimal aligned distribution for each individual prompt. By adopting recent advances in Markov chain Monte Carlo for text generation, our method enables better-aligned outputs without modifying the underlying model or even requiring logit access. We demonstrate the effectiveness of QAlign on mathematical reasoning benchmarks (GSM8K and GSM-Symbolic) using a task-specific RM, showing consistent improvements over existing test-time compute methods like best-of-n and majority voting. Furthermore, when applied with more realistic RMs trained on the Tulu 3 preference dataset, QAlign outperforms direct preference optimization (DPO), best-of-n, majority voting, and weighted majority voting on a diverse range of datasets (GSM8K, MATH500, IFEval, MMLU-Redux, and TruthfulQA). A practical solution to aligning language models at test time using additional computation without degradation, our approach expands the limits of the capability that can be obtained from off-the-shelf language models without further training.
LEGATO: Large-scale End-to-end Generalizable Approach to Typeset OMR
We propose Legato, a new end-to-end model for optical music recognition (OMR), a task of converting music score images to machine-readable documents. Legato is the first large-scale pretrained OMR model capable of recognizing full-page or multi-page typeset music scores and the first to generate documents in ABC notation, a concise, human-readable format for symbolic music. Bringing together a pretrained vision encoder with an ABC decoder trained on a dataset of more than 214K images, our model exhibits the strong ability to generalize across various typeset scores. We conduct comprehensive experiments on a range of datasets and metrics and demonstrate that Legato outperforms the previous state of the art. On our most realistic dataset, we see a 68\% and 47.6\% absolute error reduction on the standard metrics TEDn and OMR-NED, respectively.
LeVo: High-Quality Song Generation with Multi-Preference Alignment
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/.
