Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAGM2015: Antineutrino Global Map 2015
Every second greater than 10^{25} antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at 3.4^{+2.3}_{-2.2} times 10^{25} nu_e. We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with sim1% of the total flux from man-made nuclear reactors.
Characterization of a fiber laser hydrophone for acoustic neutrino detection
This paper presents the development and characterization of a fiber laser hydrophone designed for deep-sea applications, with a focus on detecting neutrino interactions via their acoustic signatures. The hydrophone design includes a static pressure compensation mechanism, ensuring reliable operation at depths exceeding 1 km. The performance of the hydrophone was evaluated through laboratory tests and experiments in an anechoic basin, where its transfer function was measured before and after a 140-bar pressure cycle. The results show that the hydrophone maintains its sensitivity, with resonance peaks identified in both low- and high-frequency ranges. The hydrophone's sensitivity to acoustic signals was also compared to ambient sea state noise levels, demonstrating compatibility with the lowest noise conditions.
Widen the Resonance: Probing a New Regime of Neutrino Self-Interactions with Astrophysical Neutrinos
Neutrino self-interactions beyond the standard model have profound implications in astrophysics and cosmology. In this work, we study an uncharted scenario in which one of the three neutrino species has a mass much smaller than the temperature of the cosmic neutrino background. This results in a relativistic component that significantly broadens the absorption feature on the astrophysical neutrino spectra, in contrast to the sharply peaked absorption expected in the extensively studied scenarios assuming a fully nonrelativistic cosmic neutrino background. By solving the Boltzmann equations for neutrino absorption and regeneration, we demonstrate that this mechanism provides novel sensitivity to sub-keV mediator masses, well below the traditional sim 1--100 MeV range. Future observations of the diffuse supernova neutrino background with Hyper-Kamiokande could probe coupling strengths down to g sim 10^{-8}, surpassing existing constraints by orders of magnitude. These findings open new directions for discoveries and offer crucial insights into the interplay between neutrinos and the dark sector.
Discovering heavy neutrino-antineutrino oscillations at the Z-pole
Collider-testable type I seesaw extensions of the Standard Model are generally protected by an approximate lepton number (LN) symmetry. Consequently, they predict pseudo-Dirac heavy neutral leptons (HNLs) composed of two nearly degenerate Majorana fields. The interference between the two mass eigenstates can induce heavy neutrino-antineutrino oscillations (NNOs) leading to observable lepton number violation (LNV), even though the LN symmetry is approximately conserved. These NNOs could be resolved in long-lived HNL searches at collider experiments, such as the proposed Future Circular e^+e^- Collider (FCC-ee) or Circular Electron Positron Collider (CEPC). However, during their Z-pole runs, the LN carried away by the light (anti)neutrinos produced alongside the HNLs prevents LNV from being observed directly. Nevertheless, NNOs materialise as oscillating signatures in final state distributions. We discuss and compare a selection of such oscillating observables, and perform a Monte Carlo simulation to assess the parameter space in which NNOs could be resolved.
Indirect dark matter searches at ultrahigh energy neutrino detectors
High to ultrahigh energy neutrino detectors can uniquely probe the properties of dark matter χ by searching for the secondary products produced through annihilation and/or decay processes. We evaluate the sensitivities to dark matter thermally averaged annihilation cross section langleσvrangle and partial decay width into neutrinos Γ_{χrightarrowνbarν} (in the mass scale 10^7 leq m_χ/{rm GeV} leq 10^{15}) for next generation observatories like POEMMA and GRAND. We show that in the range 10^7 leq m_χ/{rm GeV} leq 10^{11}, space-based Cherenkov detectors like POEMMA have the advantage of full-sky coverage and rapid slewing, enabling an optimized dark matter observation strategy focusing on the Galactic center. We also show that ground-based radio detectors such as GRAND can achieve high sensitivities and high duty cycles in radio quiet areas. We compare the sensitivities of next generation neutrino experiments with existing constraints from IceCube and updated 90\% C.L. upper limits on langleσvrangle and Γ_{χrightarrowνbarν} using results from the Pierre Auger Collaboration and ANITA. We show that in the range 10^7 leq m_χ/{rm GeV} leq 10^{11} POEMMA and GRAND10k will improve the neutrino sensitivity to particle dark matter by factors of 2 to 10 over existing limits, whereas GRAND200k will improve this sensitivity by two orders of magnitude. In the range 10^{11} leq m_χ/{rm GeV} leq 10^{15}, POEMMA's fluorescence observation mode will achieve an unprecedented sensitivity to dark matter properties. Finally, we highlight the importance of the uncertainties related to the dark matter distribution in the Galactic halo, using the latest fit and estimates of the Galactic parameters.
Lake- and Surface-Based Detectors for Forward Neutrino Physics
We propose two medium-baseline, kiloton-scale neutrino experiments to study neutrinos from LHC proton-proton collisions: SINE, a surface-based scintillator panel detector observing muon neutrinos from the CMS interaction point, and UNDINE, a water Cherenkov detector submerged in lake Geneva observing all-flavor neutrinos from LHCb. Using a Monte Carlo simulation, we estimate millions of neutrino interactions during the high-luminosity LHC era. We show that these datasets can constrain neutrino cross sections, charm production in pp collisions, and strangeness enhancement as a solution to the cosmic-ray muon puzzle. SINE and UNDINE thus offer a cost-effective medium-baseline complement to the proposed short-baseline forward physics facility.
A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the "Reactor Antineutrino Anomaly". NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a "Raghavan Optical Lattice" (ROL) consisting of 3375 boron or ^6Li loaded plastic scintillator cubical cells 6.3\,cm (2.500") on a side. Cell boundaries have a 0.127\,mm (0.005") air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
Detecting LHC Neutrinos at Surface Level
The first direct detection of neutrinos at the LHC not only marks the beginning of a novel collider neutrino program at CERN but also motivates considering additional neutrino detectors to fully exploit the associated physics potential. We investigate the feasibility and physics potential of neutrino experiments located at the surface-level. A topographic desk study was performed to identify all points at which the LHC's neutrino beams exit the earth. The closest location lies about 9 km east of the CMS interaction point, at the bottom of Lake Geneva. Several detectors to be placed at this location are considered, including a water Cherenkov detector and an emulsion detector. The detector concepts are introduced, and projections for their contribution to the LHC forward neutrino program and searches for dark sector particles are presented. However, the dilution of the neutrino flux over distance reduces the neutrino yield significantly, limiting the physics potential of surface-level detectors compared to ones closer to the interaction point, including the proposed FPF.
Theoretical Antineutrino Detection, Direction and Ranging at Long Distances
In this paper we introduce the concept of what we call "NUDAR" (NeUtrino Direction and Ranging), making the point that measurements of the observed energy and direction vectors can be employed to passively deduce the exact three-dimensional location and thermal power of geophysical and anthropogenic neutrino sources from even a single detector. We present the most precise background estimates to date, all handled in full three dimensions, as functions of depth and geographical location. For the present calculations, we consider a hypothetical 138 kiloton detector which can be transported to an ocean site and deployed to an operational depth. We present a Bayesian estimation framework to incorporate any a priori knowledge of the reactor that we are trying to detect, as well as the estimated uncertainty in the background and the oscillation parameters. Most importantly, we fully employ the knowledge of the reactor spectrum and the distance-dependent effects of neutrino oscillations on such spectra. The latter, in particular, makes possible determination of range from one location, given adequate signal statistics. Further, we explore the rich potential of improving detection with even modest improvements in individual neutrino direction determination. We conclude that a 300 MWth reactor can indeed be geolocated, and its operating power estimated with one or two detectors in the hundred kiloton class at ranges out to a few hundred kilometers. We note that such detectors would have natural and non-interfering utility for scientific studies of geo-neutrinos, neutrino oscillations, and astrophysical neutrinos. This motivates the development of cost effective methods of constructing and deploying such next generation detectors.
Sensitivity of BEACON to Ultra-High Energy Diffuse and Transient Neutrinos
Ultra-high energy neutrinos (E>10^{17} eV) can provide insight into the most powerful accelerators in the universe, however their flux is extremely low. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a detector concept which efficiently achieves sensitivity to this flux by employing phased radio arrays on mountains, which search for the radio emission of up-going extensive air showers created by Earth-skimming tau neutrinos. Here, we calculate the point-source effective area of BEACON and characterize its sensitivity to transient neutrino fluences with both short (<15 min) and long (> 1 day) durations. Additionally, by integrating the effective area, we provide an updated estimate of the diffuse flux sensitivity. With just 100 stations, BEACON achieves sensitivity to short-duration transients such as nearby short gamma-ray bursts. With 1000 stations, BEACON achieves a sensitivity to long-duration transients, as well as the cosmogenic flux, ten times greater than existing experiments at 1 EeV. With an efficient design optimized for ultrahigh energy neutrinos, BEACON is capable of discovering the sources of neutrinos at the highest energies.
High-energy neutrino emission from tidal disruption event outflow-cloud interactions
Tidal disruption events (TDEs), characterized by their luminous transients and high-velocity outflows, have emerged as plausible sources of high-energy neutrinos contributing to the diffuse neutrino. In this study, we calculate the contribution of TDEs to the diffuse neutrino by employing the outflow-cloud model within the TDE framework. Our analysis indicates that the contribution of TDEs becomes negligible when the redshift Z exceeds 2. Employing a set of fiducial values, which includes outflow energy E_{rm kin}=10^{51} erg, a proton spectrum cutoff energy E_{rm p,max}=100 PeV, a volume TDE rate N=8 times 10^{-7} rm Mpc^{-3} year^{-1}, covering fraction of clouds C_V=0.1, energy conversion efficiency in the shock eta =0.1, and a proton spectrum index Gamma=-1.7, we find that TDEs can account for approximately 80\% of the contribution at energies around 0.3 PeV. Additionally, TDEs still contribute around 18\% to the IceCube data below 0.1 PeV and the total contribution is sim 24^{+2}_{-15}%. In addition, we also discuss the potential influence of various parameter values on the results in detail. With the IceCube data, we impose constraints on the combination of the physical parameters, i.e., C_{f}=NE_{rm kin}C_{rm v}eta. Future observations or theoretical considerations would fix some physical parameters, which will help to constrain some individual parameters of TDEs.
DeepliteRT: Computer Vision at the Edge
The proliferation of edge devices has unlocked unprecedented opportunities for deep learning model deployment in computer vision applications. However, these complex models require considerable power, memory and compute resources that are typically not available on edge platforms. Ultra low-bit quantization presents an attractive solution to this problem by scaling down the model weights and activations from 32-bit to less than 8-bit. We implement highly optimized ultra low-bit convolution operators for ARM-based targets that outperform existing methods by up to 4.34x. Our operator is implemented within Deeplite Runtime (DeepliteRT), an end-to-end solution for the compilation, tuning, and inference of ultra low-bit models on ARM devices. Compiler passes in DeepliteRT automatically convert a fake-quantized model in full precision to a compact ultra low-bit representation, easing the process of quantized model deployment on commodity hardware. We analyze the performance of DeepliteRT on classification and detection models against optimized 32-bit floating-point, 8-bit integer, and 2-bit baselines, achieving significant speedups of up to 2.20x, 2.33x and 2.17x, respectively.
A search for extremely-high-energy neutrinos and first constraints on the ultra-high-energy cosmic-ray proton fraction with IceCube
We present a search for the diffuse extremely-high-energy neutrino flux using 12.6 years of IceCube data. The non-observation of neutrinos with energies well above 10 , PeV constrains the all-flavor neutrino flux at 10^{18} , eV to a level of E^2 Phi_{nu_e + nu_mu + nu_tau} simeq 10^{-8} , GeV , cm^{-2} , s^{-1} , sr^{-1}, the most stringent limit to date. Using this data, we constrain the proton fraction of ultra-high-energy cosmic rays (UHECRs) above simeq 30 , EeV to be lesssim 70,% (at 90,% CL) if the cosmological evolution of the sources is comparable to or stronger than the star formation rate. This result complements direct air-shower measurements by being insensitive to uncertainties associated with hadronic interaction models. It is the first such result to disfavor the ``proton-only" hypothesis for UHECRs using neutrino data.
The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index d n_s/dln k = 0.0062 pm 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (N_{rm eff} = 2.86 pm 0.13, which combined with external BBN data becomes N_{rm eff} = 2.89 pm 0.11), for non-zero neutrino masses (sum m_nu < 0.082 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (N_{rm idr} < 0.134), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline LambdaCDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
Investigating Lorentz Invariance Violation Effects on CP Violation and Mass Hierarchy sensitivity at DUNE
One of the current goals of neutrino experiments is to precisely determine standard unknown oscillation parameters such as the leptonic CP phase and mass hierarchy. Lorentz invariance violation represents a potential physics factor that could influence the experiment's ability to achieve these precise determinations. This study investigates the influence of Lorentz invariance violation (LIV) on oscillation dynamics, particularly through non-isotropic CPT-violating (a^{X}_{emu}, a^{X}_{etau}, a^{X}_{mutau}) and CPT-conserving (c^{XY}_{emu}, c^{XY}_{e tau}, c^{XY}_{mu tau}) parameters within the Deep Underground Neutrino Experiment (DUNE). We analyze the impact of these parameters on the mass hierarchy (MH) and Dirac CP phase sensitivity measurements. Our findings indicate that while MH sensitivity remains relatively unaffected, only the presence of c^{XY}_{mu tau} significantly deteriorates MH sensitivity, albeit remaining above the 5 sigma threshold. Additionally, we observe a substantial compromise in CP sensitivity due to the c^{XY}_{e mu} and c^{XY}_{e tau} parameters.
Neutrinos from muon-rich ultra high energy electromagnetic cascades: The MUNHECA code
An ultra high energy electromagnetic cascade, a purely leptonic process and initiated by either photons or e^pm, can be a source of high energy neutrinos. We present a public python3 code, MUNHECA, to compute the neutrino spectrum by taking into account various QED processes, with the cascade developing either along the propagation in the cosmic microwave background in the high-redshift universe or in a predefined photon background surrounding the astrophysical source. The user can adjust various settings of MUNHECA, including the spectrum of injected high energy photons, the background photon field and the QED processes governing the cascade evolution. We improve the modeling of several processes, provide examples of the execution of MUNHECA and compare it with some earlier and more simplified estimates of the neutrino spectrum from electromagnetic cascades.
Solving Key Challenges in Collider Physics with Foundation Models
Foundation Models are neural networks that are capable of simultaneously solving many problems. Large Language Foundation Models like ChatGPT have revolutionized many aspects of daily life, but their impact for science is not yet clear. In this paper, we use a new Foundation Model for hadronic jets to solve three key challenges in collider physics. In particular, we show how experiments can (1) save significant computing power when developing reconstruction algorithms, (2) perform a complete uncertainty quantification for high-dimensional measurements, and (3) search for new physics with model agnostic methods using low-level inputs. In each case, there are significant computational or methodological challenges with current methods that limit the science potential of deep learning algorithms. By solving each problem, we take jet Foundation Models beyond proof-of-principle studies and into the toolkit of practitioners.
Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics
Liquid argon time projection chambers (LArTPCs) provide dense, high-fidelity 3D measurements of particle interactions and underpin current and future neutrino and rare-event experiments. Physics reconstruction typically relies on complex detector-specific pipelines that use tens of hand-engineered pattern recognition algorithms or cascades of task-specific neural networks that require extensive, labeled simulation that requires a careful, time-consuming calibration process. We introduce Panda, a model that learns reusable sensor-level representations directly from raw unlabeled LArTPC data. Panda couples a hierarchical sparse 3D encoder with a multi-view, prototype-based self-distillation objective. On a simulated dataset, Panda substantially improves label efficiency and reconstruction quality, beating the previous state-of-the-art semantic segmentation model with 1,000times fewer labels. We also show that a single set-prediction head 1/20th the size of the backbone with no physical priors trained on frozen outputs from Panda can result in particle identification that is comparable with state-of-the-art (SOTA) reconstruction tools. Full fine-tuning further improves performance across all tasks.
CAvity DEtection Tool (CADET): Pipeline for automatic detection of X-ray cavities in hot galactic and cluster atmospheres
The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel and automated machine-learning pipeline called Cavity Detection Tool (CADET), developed to detect and estimate the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14 % at an 89 % true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5 % false-positive rate. When applied to real Chandra images, the pipeline recovered 91 out of 100 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered 8 new cavity pairs in atmospheres of early-type galaxies and galaxy clusters (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, NGC4472, NGC5129) and a number of potential cavity candidates.
Two 100 TeV neutrinos coincident with the Seyfert galaxy NGC 7469
In 2013, the IceCube collaboration announced the detection of a diffuse high-energy astrophysical neutrino flux. The origin of this flux is still largely unknown. The most significant individual source is the close-by Seyfert galaxy NGC 1068 at 4.2-sigma level with a soft spectral index. To identify sources based on their counterpart, IceCube releases realtime alerts corresponding to neutrinos with a high probability of astrophysical origin. We report here the spatial coincidence of two neutrino alerts, IC220424A and IC230416A, with the Seyfert galaxy NGC 7469 at a distance of 70 Mpc. We evaluate, a-posteriori, the chance probability of such a coincidence and discuss this source as a potential neutrino emitter based on its multi-wavelength properties and in comparison to NGC 1068 by performing a Goodness-of-Fit test. The test statistic is derived from a likelihood ratio that includes the neutrino angular uncertainty and the source distance. We apply this test first to a catalog of AGN sources and second to a catalog of Seyfert galaxies only. Our a-posteriori evaluation excludes the possibility of an accidental spatial coincidence of both neutrinos with the Seyfert galaxy NGC 7469 at 3.2-sigma level, leaving open the possibility that either one or both neutrinos originated from the source. To be compatible with non-detections of TeV neutrinos, the source would need to have a hard spectral index.
Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning
We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the Fermi-LAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1,10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from catalogued sources, and then extends as dN/dS sim S^{-2} in the unresolved regime, down to fluxes of 5 cdot 10^{-12} cm^{-2} s^{-1}. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.
Massive neutrinos and cosmic composition
Cosmological data probe massive neutrinos via their effects on the geometry of the Universe and the growth of structure, both of which are degenerate with the late-time expansion history. We clarify the nature of these degeneracies and the individual roles of both probes in neutrino mass inference. Geometry is strongly sensitive to neutrino masses: within LambdaCDM, the primary cosmic microwave background anisotropies alone impose that the matter fraction Omega_m must increase fivefold with increasing neutrino mass. Moreover, large-scale structure observables, like weak lensing of the CMB, are dimensionless and thus depend not on the matter density (as often quoted) but in fact the matter fraction. We explore the consequential impact of this distinction on the interplay between probes of structure, low-redshift distances, and CMB anisotropies. We derive constraints on the neutrino's masses independently from their suppression of structure and impact on geometry, showing that the latter is at least as important as the former. While the Dark Energy Spectroscopic Instrument's recent baryon acoustic oscillation data place stringent bounds largely deriving from their geometric incompatibility with massive neutrinos, all recent type Ia supernova datasets drive marginal preferences for nonzero neutrino masses because they prefer substantially larger matter fractions. Recent CMB lensing data, however, neither exclude neutrinos' suppression of structure nor constrain it strongly enough to discriminate between mass hierarchies. Current data thus evince not a need for modified dynamics of neutrino perturbations or structure growth but rather an inconsistent compatibility with massive neutrinos' impact on the expansion history. We identify two of DESI's measurements that strongly influence its constraints, and we also discuss neutrino mass measurements in models that alter the sound horizon.
mini-TimeCube as a Neutron Scatter Camera
We present Monte Carlo (MC) simulation results from a study of a compact plastic-scintillator detector suitable for imaging fast neutrons in the 1 -- 10 MeV energy range: the miniTimeCube (mTC). Originally designed for antineutrino detection, the mTC consists of 24 MultiChannel Plate (MCP) photodetectors surrounding a 13 cm cube of boron-doped plastic scintillator. Our simulation results show that waveform digitization of 1536 optically sensitive channels surrounding the scintillator should allow for spatiotemporal determination of individual neutron-proton scatters in the detector volume to thicksim100 picoseconds and thicksim5 mm. A Bayesian estimation framework is presented for multiple-scatter reconstruction, and is used to estimate the incoming direction and energy of simulated individual neutrons. Finally, we show how populations of reconstructed neutrons can be used to estimate the direction and energy spectrum of nearby simulated neutron sources.
Potential Contribution of Young Pulsar Wind Nebulae to Galactic High-Energy Neutrino Emission
Pulsar wind nebulae (PWNe), especially the young ones, are among the most energetic astrophysical sources in the Galaxy. It is usually believed that the spin-down energy injected from the pulsars is converted into magnetic field and relativistic electrons, but the possible presence of proton acceleration inside PWNe cannot be ruled out. Previous works have estimated the neutrino emission from PWNe using various source catalogs measured in gamma-rays. However, such results rely on the sensitivity of TeV gamma-ray observations and may omit the contribution by unresolved sources. Here we estimate the potential neutrino emission from a synthetic population of PWNe in the Galaxy with a focus on the ones that are still in the free expansion phase. In the calculation, we model the temporal evolution of the free-expanding PWNe and consider the transport of protons inside the PWNe. The Crab nebula is treated as a standard template for young PWNe to evaluate some model parameters, such as the energy conversion fraction of relativistic protons and the target gas density for the hadronic process, which are relevant to neutrino production. In the optimistic case, the neutrino flux from the simulated young PWNe may constitute to 5% of the measured flux by IceCube around 100 TeV. At higher energy around 1 PeV, the neutrino emission from the population highly depends on the injection spectral shape, and also on the emission of the nearby prominent sources.
Prediction of superconducting properties of materials based on machine learning models
The application of superconducting materials is becoming more and more widespread. Traditionally, the discovery of new superconducting materials relies on the experience of experts and a large number of "trial and error" experiments, which not only increases the cost of experiments but also prolongs the period of discovering new superconducting materials. In recent years, machine learning has been increasingly applied to materials science. Based on this, this manuscript proposes the use of XGBoost model to identify superconductors; the first application of deep forest model to predict the critical temperature of superconductors; the first application of deep forest to predict the band gap of materials; and application of a new sub-network model to predict the Fermi energy level of materials. Compared with our known similar literature, all the above algorithms reach state-of-the-art. Finally, this manuscript uses the above models to search the COD public dataset and identify 50 candidate superconducting materials with possible critical temperature greater than 90 K.
Likelihood Reconstruction for Radio Detectors of Neutrinos and Cosmic Rays
Ultra-high-energy neutrinos and cosmic rays are excellent probes of astroparticle physics phenomena. For astroparticle physics analyses, robust and accurate reconstruction of signal parameters such as arrival direction and energy is essential. Radio detection is an established detector concept explored by many observatories; however, current reconstruction methods ignore bin-to-bin noise correlations, which limits reconstruction resolution and, so far, has prevented calculations of event-by-event uncertainties. In this work, we present a likelihood description of neutrino or cosmic-ray signals in radio detectors with correlated noise, as present in all neutrino and cosmic-ray radio detectors. We demonstrate, with simulation studies of both neutrinos and cosmic-ray radio signals, that signal parameters such as energy and direction, including event-by-event uncertainties with correct coverage, can be obtained. This method reduces reconstruction uncertainties and biases compared to previous approaches. Additionally, the Likelihood can be used for event selection and enables differentiable end-to-end detector optimization. The reconstruction code is available through the open-source software NuRadioReco.
Invited Article: miniTimeCube
We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% ^{10}B - doped scintillator (13 cm)^3 cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8times8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguish different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) nuclear reactor (20 MW_th) in Gaithersburg, MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC's improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
DeepRobust is a PyTorch adversarial learning library which aims to build a comprehensive and easy-to-use platform to foster this research field. It currently contains more than 10 attack algorithms and 8 defense algorithms in image domain and 9 attack algorithms and 4 defense algorithms in graph domain, under a variety of deep learning architectures. In this manual, we introduce the main contents of DeepRobust with detailed instructions. The library is kept updated and can be found at https://github.com/DSE-MSU/DeepRobust.
Letter of Intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.
Disentangling axion-like particle couplings to nucleons via a delayed signal in Super-Kamiokande from a future supernova
In this work, we show that, if axion-like particles (ALPs) from core-collapse supernovae (SNe) couple to protons, they would produce very characteristic signatures in neutrino water Cherenkov detectors through their scattering off free protons via a , p rightarrow p , gamma interactions. Specifically, sub-MeV ALPs would generate photons with energies sim 30 MeV, which could be observed by Super-Kamiokande and Hyper-Kamiokande as a delayed signal after a future detection of SN neutrinos. We apply this to a hypothetical neighbouring SN (at a maximum distance of 100 kpc) and demonstrate that the region in the parameter space with ALP masses between 10^{-4} MeV and 1 MeV and ALP-proton couplings in the range 3 times 10^{-6}-4 times 10^{-5} could be probed. We argue that this new signature, combined with the one expected at sim 7 MeV from oxygen de-excitation, would allow us to disentangle ALP-neutron and ALP-proton couplings.
Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning
We develop a multi-step workflow for the discovery of conventional superconductors, starting with a Bardeen Cooper Schrieffer inspired pre-screening of 1736 materials with high Debye temperature and electronic density of states. Next, we perform electron-phonon coupling calculations for 1058 of them to establish a large and systematic database of BCS superconducting properties. Using the McMillan-Allen-Dynes formula, we identify 105 dynamically stable materials with transition temperatures, Tc>5 K. Additionally, we analyze trends in our dataset and individual materials including MoN, VC, VTe, KB6, Ru3NbC, V3Pt, ScN, LaN2, RuO2, and TaC. We demonstrate that deep-learning(DL) models can predict superconductor properties faster than direct first principles computations. Notably, we find that by predicting the Eliashberg function as an intermediate quantity, we can improve model performance versus a direct DL prediction of Tc. We apply the trained models on the crystallographic open database and pre-screen candidates for further DFT calculations.
The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression
A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.
Blazar Boosted ALP and vector portal Dark matter confronting light mediator searches
The trouble in detecting low mass dark matter due to its low kinetic energy can be ameliorated in the boosted dark matter framework, where a sub-population of galactic dark matter attains very high energy after being up-scattered by energetic standard model particles. However, in such a scenario the upper limits on the cross-section obtained hitherto are typically large. Hence in the minimal extension of standard model where new mediators act as a portal between the dark and visible sectors, the direct detection limits for sub-GeV dark matter might lie within the exclusion region of other ground based searches of the mediator. To evade this deadlock, we allude to blazar boosted dark matter electron scattering in multi-ton neutrino detector Super kamiokande. We consider minimal models such as axion like particle (ALP) and vector portal dark matter being upscattered by high energy blazar jet and analyse the interesting parameter reaches from Super kamiokande in the parameter space of the mediator, surpassing the existing constraints. Besides, this scenario exhibits stronger limits for previously unexplored ALP mediated sub-MeV dark matter search which is difficult due to associated momentum suppression.
Physics-based parameterized neural ordinary differential equations: prediction of laser ignition in a rocket combustor
In this work, we present a novel physics-based data-driven framework for reduced-order modeling of laser ignition in a model rocket combustor based on parameterized neural ordinary differential equations (PNODE). Deep neural networks are embedded as functions of high-dimensional parameters of laser ignition to predict various terms in a 0D flow model including the heat source function, pre-exponential factors, and activation energy. Using the governing equations of a 0D flow model, our PNODE needs only a limited number of training samples and predicts trajectories of various quantities such as temperature, pressure, and mass fractions of species while satisfying physical constraints. We validate our physics-based PNODE on solution snapshots of high-fidelity Computational Fluid Dynamics (CFD) simulations of laser-induced ignition in a prototype rocket combustor. We compare the performance of our physics-based PNODE with that of kernel ridge regression and fully connected neural networks. Our results show that our physics-based PNODE provides solutions with lower mean absolute errors of average temperature over time, thus improving the prediction of successful laser ignition with high-dimensional parameters.
ShapeNet: Shape Constraint for Galaxy Image Deconvolution
Deep Learning (DL) has shown remarkable results in solving inverse problems in various domains. In particular, the Tikhonet approach is very powerful to deconvolve optical astronomical images (Sureau et al. 2020). Yet, this approach only uses the ell_2 loss, which does not guarantee the preservation of physical information (e.g. flux and shape) of the object reconstructed in the image. In Nammour et al. (2021), a new loss function was proposed in the framework of sparse deconvolution, which better preserves the shape of galaxies and reduces the pixel error. In this paper, we extend Tikhonet to take into account this shape constraint, and apply our new DL method, called ShapeNet, to optical and radio-interferometry simulated data set. The originality of the paper relies on i) the shape constraint we use in the neural network framework, ii) the application of deep learning to radio-interferometry image deconvolution for the first time, and iii) the generation of a simulated radio data set that we make available for the community. A range of examples illustrates the results.
YOLOBench: Benchmarking Efficient Object Detectors on Embedded Systems
We present YOLOBench, a benchmark comprised of 550+ YOLO-based object detection models on 4 different datasets and 4 different embedded hardware platforms (x86 CPU, ARM CPU, Nvidia GPU, NPU). We collect accuracy and latency numbers for a variety of YOLO-based one-stage detectors at different model scales by performing a fair, controlled comparison of these detectors with a fixed training environment (code and training hyperparameters). Pareto-optimality analysis of the collected data reveals that, if modern detection heads and training techniques are incorporated into the learning process, multiple architectures of the YOLO series achieve a good accuracy-latency trade-off, including older models like YOLOv3 and YOLOv4. We also evaluate training-free accuracy estimators used in neural architecture search on YOLOBench and demonstrate that, while most state-of-the-art zero-cost accuracy estimators are outperformed by a simple baseline like MAC count, some of them can be effectively used to predict Pareto-optimal detection models. We showcase that by using a zero-cost proxy to identify a YOLO architecture competitive against a state-of-the-art YOLOv8 model on a Raspberry Pi 4 CPU. The code and data are available at https://github.com/Deeplite/deeplite-torch-zoo
Rare Leptonic Processes Induced by Massless Dark Photon
We introduce a dark photon considering a U(1) gauge extension of the standard model in particle physics. Provided that the extra U(1) symmetry is unbroken, the dark photon is massless and has no coupling to the standard electromagnetic current. Higher-dimensional operators describe interactions of the massless dark photon with particles in the standard model. We investigate the interactions of the massless dark photon with charged leptons via dipole operators, mainly focusing on the lepton family-violating processes. We present an improved constraint in the polarized two-body muon decay and a set of new bounds in tau decays. We also examine possible lepton family-violating signals of the massless dark photon in future lepton colliders.
Fast Muon Tracking with Machine Learning Implemented in FPGA
In this work, we present a new approach for fast tracking on multiwire proportional chambers with neural networks. The tracking networks are developed and adapted for the first-level trigger at hadron collider experiments. We use Monte Carlo samples generated by Geant4 with a custom muon chamber, which resembles part of the thin gap chambers from the ATLAS experiment, for training and performance evaluations. The chamber has a total of seven gas gaps, where the first and last gas gaps are displaced by ~1.5 m. Each gas gap has 50 channels with a size of 18-20 mm. Two neural network models are developed and presented: a convolutional neural network and a neural network optimized for the detector configuration of this study. In the latter network, a convolution layer is provided for each of three groups formed from 2-3 gas gaps of the chamber, and the outputs are fed into multilayer perceptrons in sequence. Both networks are transformed into hardware description language and implemented in Virtex UltraScale+ FPGA. The angular resolution is 2 mrad, which is comparable to the maximum resolution of the detector estimated by the minimum chi2 method. The latency achieved by the implemented firmware is less than 100 ns, and the throughput rate is 160 MHz.
FeynTune: Large Language Models for High-Energy Theory
We present specialized Large Language Models for theoretical High-Energy Physics, obtained as 20 fine-tuned variants of the 8-billion parameter Llama-3.1 model. Each variant was trained on arXiv abstracts (through August 2024) from different combinations of hep-th, hep-ph and gr-qc. For a comparative study, we also trained models on datasets that contained abstracts from disparate fields such as the q-bio and cs categories. All models were fine-tuned using two distinct Low-Rank Adaptation fine-tuning approaches and varying dataset sizes, and outperformed the base model on hep-th abstract completion tasks. We compare performance against leading commercial LLMs (ChatGPT, Claude, Gemini, DeepSeek) and derive insights for further developing specialized language models for High-Energy Theoretical Physics.
DeepLab2: A TensorFlow Library for Deep Labeling
DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a state-of-the-art and easy-to-use TensorFlow codebase for general dense pixel prediction problems in computer vision. DeepLab2 includes all our recently developed DeepLab model variants with pretrained checkpoints as well as model training and evaluation code, allowing the community to reproduce and further improve upon the state-of-art systems. To showcase the effectiveness of DeepLab2, our Panoptic-DeepLab employing Axial-SWideRNet as network backbone achieves 68.0% PQ or 83.5% mIoU on Cityscaspes validation set, with only single-scale inference and ImageNet-1K pretrained checkpoints. We hope that publicly sharing our library could facilitate future research on dense pixel labeling tasks and envision new applications of this technology. Code is made publicly available at https://github.com/google-research/deeplab2.
Sets are all you need: Ultrafast jet classification on FPGAs for HL-LHC
We study various machine learning based algorithms for performing accurate jet flavor classification on field-programmable gate arrays and demonstrate how latency and resource consumption scale with the input size and choice of algorithm. These architectures provide an initial design for models that could be used for tagging at the CERN LHC during its high-luminosity phase. The high-luminosity upgrade will lead to a five-fold increase in its instantaneous luminosity for proton-proton collisions and, in turn, higher data volume and complexity, such as the availability of jet constituents. Through quantization-aware training and efficient hardware implementations, we show that O(100) ns inference of complex architectures such as deep sets and interaction networks is feasible at a low computational resource cost.
A Language Model for Particle Tracking
Particle tracking is crucial for almost all physics analysis programs at the Large Hadron Collider. Deep learning models are pervasively used in particle tracking related tasks. However, the current practice is to design and train one deep learning model for one task with supervised learning techniques. The trained models work well for tasks they are trained on but show no or little generalization capabilities. We propose to unify these models with a language model. In this paper, we present a tokenized detector representation that allows us to train a BERT model for particle tracking. The trained BERT model, namely TrackingBERT, offers latent detector module embedding that can be used for other tasks. This work represents the first step towards developing a foundational model for particle detector understanding.
An improved infrastructure for the IceCube realtime system
The IceCube realtime alert system has been operating since 2016. It provides prompt alerts on high-energy neutrino events to the astroparticle physics community. The localization regions for the incoming direction of neutrinos are published through NASA's Gamma-ray Coordinate Network (GCN). The IceCube realtime system consists of infrastructure dedicated to the selection of alert events, the reconstruction of their topology and arrival direction, the calculation of directional uncertainty contours and the distribution of the event information through public alert networks. Using a message-based workflow management system, a dedicated software (SkyDriver) provides a representational state transfer (REST) interface to parallelized reconstruction algorithms. In this contribution, we outline the improvements of the internal infrastructure of the IceCube realtime system that aims to streamline the internal handling of neutrino events, their distribution to the SkyDriver interface, the collection of the reconstruction results as well as their conversion into human- and machine-readable alerts to be publicly distributed through different alert networks. An approach for the long-term storage and cataloging of alert events according to findability, accessibility, interoperability and reusability (FAIR) principles is outlined.
NNsight and NDIF: Democratizing Access to Foundation Model Internals
The enormous scale of state-of-the-art foundation models has limited their accessibility to scientists, because customized experiments at large model sizes require costly hardware and complex engineering that is impractical for most researchers. To alleviate these problems, we introduce NNsight, an open-source Python package with a simple, flexible API that can express interventions on any PyTorch model by building computation graphs. We also introduce NDIF, a collaborative research platform providing researchers access to foundation-scale LLMs via the NNsight API. Code, documentation, and tutorials are available at https://www.nnsight.net.
A Local Dwarf Galaxy Search Using Machine Learning
We present a machine learning search for local, low-mass galaxies (z < 0.02 and 10^6 M_odot < M_* < 10^9 M_odot) using the combined photometric data from the DESI Imaging Legacy Surveys and the WISE survey. We introduce the spectrally confirmed training sample, discuss evaluation metrics, investigate the features, compare different machine learning algorithms, and find that a 7-class neural network classification model is highly effective in separating the signal (local, low-mass galaxies) from various contaminants, reaching a precision of 95% and a recall of 76%. The principal contaminants are nearby sub-L^* galaxies at 0.02 < z < 0.05 and nearby massive galaxies at 0.05 < z < 0.2. We find that the features encoding surface brightness information are essential to achieving a correct classification. Our final catalog, which we make available, consists of 112,859 local, low-mass galaxy candidates, where 36,408 have high probability (p_{rm signal} > 0.95), covering the entire Legacy Surveys DR9 footprint. Using DESI-EDR public spectra and data from the SAGA and ELVES surveys, we find that our model has a precision of sim 100%, 96%, and 97%, respectively, and a recall of sim 51%, 68% and 53%, respectively. The results of those independent spectral verification demonstrate the effectiveness and efficiency of our machine learning classification model.
Enhancing the significance of astrophysical events with multimessenger coincidences
Coincident multimessenger observations of cosmic sources can offer numerous benefits, especially when used in the context of synergistic astrophysics. One significant advantage is enhancing the detection significance of separate detectors by correlating their data and assuming joint emission. We have formulated an approach for updating the Bayesian posterior probability of an astrophysical origin, namely p_{rm astro}, relying on multimessenger coincidences assuming an emission model. The description is applicable to any combination of messengers. We demonstrated the formalism for the gravitational waves and high-energy neutrinos case. Applying our method to the public data of candidate coincident high-energy neutrinos with subthreshold gravitational-wave triggers, we found that in the case of highly energetic neutrino coincidences, p_{rm astro} can increase from approximately sim 0.1 to sim 0.9. The amount of improvement depends on the assumed joint emission model. If models are trusted, the marked improvement makes subthreshold detections much more confident. Moreover, the model dependency can also be used to test the consistency of different models. This work is a crucial step toward the goal of uniting all detectors on equal footing into a statistically integrated, Earth-sized observatory for comprehensive multimessenger astrophysics.
Cryoscope: A Cryogenic Infrared Survey Telescope in Antarctica
We present Cryoscope--a new 50 deg^2 field-of-view, 1.2 m aperture, K_{dark} survey telescope to be located at Dome C, Antarctica. Cryoscope has an innovative optical-thermal design wherein the entire telescope is cryogenically cooled. Cryoscope also explores new detector technology to cost-effectively tile the full focal plane. Leveraging the dark Antarctic sky and minimizing telescope thermal emission, Cryoscope achieves unprecedented deep, wide, fast and red observations, matching and exceeding volumetric survey speeds from the Ultraviolet Explorer, Vera Rubin Observatory, Nancy Grace Roman Space Telescope, SPHEREx, and NEO Surveyor. By providing coverage beyond wavelengths of 2 mum, we aim to create the most comprehensive dynamic movie of the most obscured reaches of the Universe. Cryoscope will be a dedicated discovery engine for electromagnetic emission from coalescing compact binaries, Earth-like exoplanets orbiting cold stars, and multiple facets of time-domain, stellar and solar system science. In this paper, we describe the scientific drivers and technical innovations for this new discovery engine operating in the K_{dark} passband, why we choose to deploy it in Antarctica, and the status of a fifth-scale prototype designed as a Pathfinder to retire technological risks prior to full-scale implementation. We plan to deploy the Cryoscope Pathfinder to Dome C in December 2026 and the full-scale telescope by 2030.
NVIDIA Nemotron 3: Efficient and Open Intelligence
We introduce the Nemotron 3 family of models - Nano, Super, and Ultra. These models deliver strong agentic, reasoning, and conversational capabilities. The Nemotron 3 family uses a Mixture-of-Experts hybrid Mamba-Transformer architecture to provide best-in-class throughput and context lengths of up to 1M tokens. Super and Ultra models are trained with NVFP4 and incorporate LatentMoE, a novel approach that improves model quality. The two larger models also include MTP layers for faster text generation. All Nemotron 3 models are post-trained using multi-environment reinforcement learning enabling reasoning, multi-step tool use, and support granular reasoning budget control. Nano, the smallest model, outperforms comparable models in accuracy while remaining extremely cost-efficient for inference. Super is optimized for collaborative agents and high-volume workloads such as IT ticket automation. Ultra, the largest model, provides state-of-the-art accuracy and reasoning performance. Nano is released together with its technical report and this white paper, while Super and Ultra will follow in the coming months. We will openly release the model weights, pre- and post-training software, recipes, and all data for which we hold redistribution rights.
The Mu3e Experiment: Status and Short-Term Plans
Mu3e is an experiment currently under construction at the Paul Scherrer Institute in Switzerland, designed to search for the Lepton Flavor Violating (LFV) decay mu^+ rightarrow e^+e^-e^+. In extensions of the Standard Model (SM) that account for neutrino masses, this decay is theoretically allowed but occurs only through extremely rare loop processes, with a predicted branching ratio of approximately O(10^{-54}). Such a small probability implies that any observation of this decay would provide clear evidence for physics beyond the SM. The Mu3e experiment aims to probe the mu^+ rightarrow e^+e^-e^+ decay with a sensitivity of approximately O(10^{-15}) in its Phase-1 and plans to achieve a sensitivity of O(10^{-16}) after future upgrades. To reach its Phase-1 ambitious goals, Mu3e is going to use the most intense continuous muon beam in the world, generating 10^{8} muon stops per second in the target placed at the center of the Mu3e. Mu3e will use three main technologies for particle detection. The tracking will done through ultra-thin (50 - 70 mu m) pixel detectors based on MuPix11 sensors. These are high-voltage monolithic active pixel sensors (HV-MAPS) with a sim 23~mum spatial resolution. The timing will be done through scintillating fibres (sim 250 ps) and tiles (sim 40 ps), coupled to silicon photomultipliers and read out by MuTRiG3 ASICs. A triggerless DAQ system based on FPGAs will collect data from the detectors, which will then undergo reconstruction in a GPU filter farm. The assembly of the detectors has started, with a detector commissioning beam time planned for 2025. This document reports on the status of the construction, installation, and data-taking plans for the near future.
Baryon-number-violating nucleon decays in SMEFT extended with a light scalar
New light particles have received considerable attention in recent years. Baryon-number-violating (BNV) nucleon decays involving such light particles are able to provide stringent constraints. They exhibit distinctive experimental signatures that merit thorough investigation. We systematically investigate BNV nucleon decay with a light scalar in an effective field theory framework. Within this framework, we set stringent bounds on BNV operators using available experimental data and predict the occurrence of several BNV three-body nucleon decays. We further study contributions to dinucleon to dilepton transitions in a nucleus mediated by the scalar, which complements single nucleon decay. Finally, we provide three ultraviolet-complete models that can generate different subsets of BNV operators in leading order. Our theoretical framework will facilitate experimental searches for those exotic nucleon decays.
Enhancing the Sensitivity for Triple Higgs Boson Searches with Deep Learning Techniques
Using two benchmark models containing extended scalar sectors beyond the Standard Model, we study deep learning techniques to enhance the sensitivity of resonant triple Higgs boson searches in the fully hadronic 6b channel, which suffers from the combinatorial challenge of reconstructing the Higgs bosons correctly from the multiple b-jets. More specifically, we employ the framework of Symmetry Preserving Attention Network (Spa-Net), which takes into account the permutational symmetry when a correct pairing of b-jets is achieved, to tackle both jet pairing and event classification. Significantly improved efficiency is achieved in signal and background discrimination. When comparing with the conventional Dense Neural Networks, Spa-Net results in up to 40\% more stringent limits on resonant production cross-sections. These results highlight the potential of using advanced machine learning techniques to significantly improve the sensitivity of triple Higgs boson searches in the fully hadronic channel.
Galvatron: Automatic Distributed Training for Large Transformer Models
Training multi-billion to trillion-parameter language models efficiently on GPU clusters requires leveraging multiple parallelism strategies. We present Galvatron, a novel open-source framework (dubbed 'Optimus-Megatron' in the implementation) that dynamically combines data parallelism, tensor model parallelism, and pipeline parallelism to optimize training throughput. Built atop PyTorch and integrating NVIDIA's Megatron-LM and Microsoft's DeepSpeed, Galvatron automatically selects and adjusts parallelism strategies in real time based on model architecture, hardware, and training dynamics. This paper details Galvatron's key features -- automatic hybrid parallelism selection, layer-wise and phase-wise strategy optimization, and runtime adaptation -- and contrasts them with existing static frameworks. We describe the system's technical stack, including its use of DeepSpeed's ZeRO and NCCL communication, and provide an in-depth implementation overview of its core modules (profilers, strategy selector, parallelism manager). We then illustrate how Galvatron can be seamlessly integrated into existing training pipelines with minimal code modifications, providing companies a plug-and-play solution for efficient large-model training. Finally, we situate Galvatron in context with related efforts (NVIDIA Megatron-LM, Microsoft DeepSpeed, Google GShard, Meta FairScale, etc.), highlighting how it advances the state of the art in distributed deep learning. References to the GitHub repository and relevant literature are provided throughout.
Neural network emulator to constrain the high-z IGM thermal state from Lyman-α forest flux auto-correlation function
We present a neural network emulator to constrain the thermal parameters of the intergalactic medium (IGM) at 5.4z6.0 using the Lyman-displaystylealpha (Lydisplaystylealpha) forest flux auto-correlation function. Our auto-differentiable JAX-based framework accelerates the surrogate model generation process using approximately 100 sparsely sampled Nyx hydrodynamical simulations with varying combinations of thermal parameters, i.e., the temperature at mean density T_{{0}}, the slope of the temperaturedisplaystyle-density relation displaystylegamma, and the mean transmission flux langle{F}{rangle}. We show that this emulator has a typical accuracy of 1.0% across the specified redshift range. Bayesian inference of the IGM thermal parameters, incorporating emulator uncertainty propagation, is further expedited using NumPyro Hamiltonian Monte Carlo. We compare both the inference results and computational cost of our framework with the traditional nearest-neighbor interpolation approach applied to the same set of mock Lyalpha flux. By examining the credibility contours of the marginalized posteriors for T_{{0}},gamma,and{langle}{F}{rangle} obtained using the emulator, the statistical reliability of measurements is established through inference on 100 realistic mock data sets of the auto-correlation function.
A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the CMS experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the neural network weights, a unique data compression algorithm can be deployed for each sensor in different detector regions, and changing detector or collider conditions. To meet area, performance, and power constraints, we perform a quantization-aware training to create an optimized neural network hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework, and was processed through synthesis and physical layout flows based on a LP CMOS 65 nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates, and reports a total area of 3.6 mm^2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.
Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift
We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.
Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots
The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.
Evaluating small vision-language models as AI assistants for radio astronomical source analysis tasks
The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based AI interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models remains resource-intensive, and there is a growing demand for AI systems that can reason over both visual and textual data in astronomical analysis. This study explores small-scale Vision-Language Models (VLMs) as AI assistants for radio astronomy, combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform pure vision models and exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on standard benchmarks. This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.
Deep Learning the Forecast of Galactic Cosmic-Ray Spectra
We introduce a novel deep learning framework based on Long Short-Term Memory (LSTM) networks to predict galactic cosmic-ray spectra on a one-day-ahead basis by leveraging historical solar activity data, overcoming limitations inherent in traditional transport models. By flexibly incorporating multiple solar parameters, such as the heliospheric magnetic field, solar wind speed, and sunspot numbers, our model achieves accurate short-term and long-term predictions of cosmic-ray flux. The addition of historical cosmic-ray flux data significantly enhances prediction accuracy, allowing the model to capture complex dependencies between past and future flux variations. Additionally, the model reliably predicts full cosmic-ray spectra for different particle species, enhancing its utility for comprehensive space weather forecasting. Our approach offers a scalable, data-driven alternative to traditional physics-based methods, ensuring robust daily and long-term forecasts. This work opens avenues for advanced models that can integrate broader observational data, with significant implications for space weather monitoring and mission planning.
Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
We present Jet-Nemotron, a new family of hybrid-architecture language models, which matches or exceeds the accuracy of leading full-attention models while significantly improving generation throughput. Jet-Nemotron is developed using Post Neural Architecture Search (PostNAS), a novel neural architecture exploration pipeline that enables efficient model design. Unlike prior approaches, PostNAS begins with a pre-trained full-attention model and freezes its MLP weights, allowing efficient exploration of attention block designs. The pipeline includes four key components: (1) learning optimal full-attention layer placement and elimination, (2) linear attention block selection, (3) designing new attention blocks, and (4) performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6x generation throughput speedup and 6.1x prefilling speedup. It also achieves higher accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with 15B total and 2.2B activated parameters.
Ionospheric activity prediction using convolutional recurrent neural networks
The ionosphere electromagnetic activity is a major factor of the quality of satellite telecommunications, Global Navigation Satellite Systems (GNSS) and other vital space applications. Being able to forecast globally the Total Electron Content (TEC) would enable a better anticipation of potential performance degradations. A few studies have proposed models able to predict the TEC locally, but not worldwide for most of them. Thanks to a large record of past TEC maps publicly available, we propose a method based on Deep Neural Networks (DNN) to forecast a sequence of global TEC maps consecutive to an input sequence of TEC maps, without introducing any prior knowledge other than Earth rotation periodicity. By combining several state-of-the-art architectures, the proposed approach is competitive with previous works on TEC forecasting while predicting the TEC globally.
Muon is Scalable for LLM Training
Recently, the Muon optimizer based on matrix orthogonalization has demonstrated strong results in training small-scale language models, but the scalability to larger models has not been proven. We identify two crucial techniques for scaling up Muon: (1) adding weight decay and (2) carefully adjusting the per-parameter update scale. These techniques allow Muon to work out-of-the-box on large-scale training without the need of hyper-parameter tuning. Scaling law experiments indicate that Muon achieves sim!2times computational efficiency compared to AdamW with compute optimal training. Based on these improvements, we introduce Moonlight, a 3B/16B-parameter Mixture-of-Expert (MoE) model trained with 5.7T tokens using Muon. Our model improves the current Pareto frontier, achieving better performance with much fewer training FLOPs compared to prior models. We open-source our distributed Muon implementation that is memory optimal and communication efficient. We also release the pretrained, instruction-tuned, and intermediate checkpoints to support future research.
A new method for structural diagnostics with muon tomography and deep learning
This work investigates the production of high-resolution images of typical support elements in concrete structures by means of the muon tomography (muography). By exploiting detailed Monte Carlo radiation-matter simulations, we demonstrate the feasibility of the reconstruction of 1 cm--thick iron tubes inside 30 cm--deep concrete blocks, regarded as an important testbed within the structural diagnostics community. In addition, we present a new method for integrating simulated data with advanced deep learning techniques in order to improve the muon imaging of concrete structures. Through deep learning enhancement techniques, this results into a dramatic improvement of the image quality, as well as into a significant reduction of the data acquisition time, which are two critical limitations within the usual practice of muography for civil engineering diagnostics.
MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery
This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.
Forecasting Lithium-Ion Battery Longevity with Limited Data Availability: Benchmarking Different Machine Learning Algorithms
As the use of Lithium-ion batteries continues to grow, it becomes increasingly important to be able to predict their remaining useful life. This work aims to compare the relative performance of different machine learning algorithms, both traditional machine learning and deep learning, in order to determine the best-performing algorithms for battery cycle life prediction based on minimal data. We investigated 14 different machine learning models that were fed handcrafted features based on statistical data and split into 3 feature groups for testing. For deep learning models, we tested a variety of neural network models including different configurations of standard Recurrent Neural Networks, Gated Recurrent Units, and Long Short Term Memory with and without attention mechanism. Deep learning models were fed multivariate time series signals based on the raw data for each battery across the first 100 cycles. Our experiments revealed that the machine learning algorithms on handcrafted features performed particularly well, resulting in 10-20% average mean absolute percentage error. The best-performing algorithm was the Random Forest Regressor, which gave a minimum 9.8% mean absolute percentage error. Traditional machine learning models excelled due to their capability to comprehend general data set trends. In comparison, deep learning models were observed to perform particularly poorly on raw, limited data. Algorithms like GRU and RNNs that focused on capturing medium-range data dependencies were less adept at recognizing the gradual, slow trends critical for this task. Our investigation reveals that implementing machine learning models with hand-crafted features proves to be more effective than advanced deep learning models for predicting the remaining useful Lithium-ion battery life with limited data availability.
Combined Scheduling, Memory Allocation and Tensor Replacement for Minimizing Off-Chip Data Accesses of DNN Accelerators
Specialized hardware accelerators have been extensively used for Deep Neural Networks (DNNs) to provide power/performance benefits. These accelerators contain specialized hardware that supports DNN operators, and scratchpad memory for storing the tensor operands. Often, the size of the scratchpad is insufficient to store all the tensors needed for the computation, and additional data accesses are needed to move tensors back and forth from host memory during the computation with significant power/performance overhead. The volume of these additional data accesses depends on the operator schedule, and memory allocation (specific locations selected for the tensors in the scratchpad). We propose an optimization framework, named COSMA, for mapping DNNs to an accelerator that finds the optimal operator schedule, memory allocation and tensor replacement that minimizes the additional data accesses. COSMA provides an Integer Linear Programming (ILP) formulation to generate the optimal solution for mapping a DNN to the accelerator for a given scratchpad size. We demonstrate that, using an off-the-shelf ILP solver, COSMA obtains the optimal solution in seconds for a wide-range of state-of-the-art DNNs for different applications. Further, it out-performs existing methods by reducing on average 84% of the non-compulsory data accesses. We further propose a divide-and-conquer heuristic to scale up to certain complex DNNs generated by Neural Architecture Search, and this heuristic solution reduces on average 85% data accesses compared with other works.
The DeepLog Neurosymbolic Machine
We contribute a theoretical and operational framework for neurosymbolic AI called DeepLog. DeepLog introduces building blocks and primitives for neurosymbolic AI that make abstraction of commonly used representations and computational mechanisms used in neurosymbolic AI. DeepLog can represent and emulate a wide range of neurosymbolic systems. It consists of two key components. The first is the DeepLog language for specifying neurosymbolic models and inference tasks. This language consists of an annotated neural extension of grounded first-order logic, and makes abstraction of the type of logic, e.g. boolean, fuzzy or probabilistic, and whether logic is used in the architecture or in the loss function. The second DeepLog component is situated at the computational level and uses extended algebraic circuits as computational graphs. Together these two components are to be considered as a neurosymbolic abstract machine, with the DeepLog language as the intermediate level of abstraction and the circuits level as the computational one. DeepLog is implemented in software, relies on the latest insights in implementing algebraic circuits on GPUs, and is declarative in that it is easy to obtain different neurosymbolic models by making different choices for the underlying algebraic structures and logics. The generality and efficiency of the DeepLog neurosymbolic machine is demonstrated through an experimental comparison between 1) different fuzzy and probabilistic logics, 2) between using logic in the architecture or in the loss function, and 3) between a standalone CPU-based implementation of a neurosymbolic AI system and a DeepLog GPU-based one.
Real-Time Prediction of Gas Flow Dynamics in Diesel Engines using a Deep Neural Operator Framework
We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum mathcal L_2 relative error observed was approximately 6.5%. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the (mu + 2sigma) boundary was found to be 12%. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.
Theoretical Physics Benchmark (TPBench) -- a Dataset and Study of AI Reasoning Capabilities in Theoretical Physics
We introduce a benchmark to evaluate the capability of AI to solve problems in theoretical physics, focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57 problems of varying difficulty, from undergraduate to research level. These problems are novel in the sense that they do not come from public problem collections. We evaluate our data set on various open and closed language models, including o3-mini, o1, DeepSeek-R1, GPT-4o and versions of Llama and Qwen. While we find impressive progress in model performance with the most recent models, our research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and grading, and discuss common failure modes. While currently state-of-the art models are still of limited use for researchers, our results show that AI assisted theoretical physics research may become possible in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome them. The public problems and solutions, results for various models, and updates to the data set and score distribution, are available on the website of the dataset tpbench.org.
PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and Energy Extraction of Nuclear Detector Signals
Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.
Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
Large language models (LLMs) have demonstrated remarkable capabilities, but their adoption is limited by high computational costs during inference. While increasing parameter counts enhances accuracy, it also widens the gap between state-of-the-art capabilities and practical deployability. We present Puzzle, a framework to accelerate LLM inference on specific hardware while preserving their capabilities. Through an innovative application of neural architecture search (NAS) at an unprecedented scale, Puzzle systematically optimizes models with tens of billions of parameters under hardware constraints. Our approach utilizes blockwise local knowledge distillation (BLD) for parallel architecture exploration and employs mixed-integer programming for precise constraint optimization. We demonstrate the real-world impact of our framework through Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B), a publicly available model derived from Llama-3.1-70B-Instruct. Nemotron-51B achieves a 2.17x inference throughput speedup, fitting on a single NVIDIA H100 GPU while preserving 98.4% of the original model's capabilities. Nemotron-51B currently stands as the most accurate language model capable of inference on a single GPU with large batch sizes. Remarkably, this transformation required just 45B training tokens, compared to over 15T tokens used for the 70B model it was derived from. This establishes a new paradigm where powerful models can be optimized for efficient deployment with only negligible compromise of their capabilities, demonstrating that inference performance, not parameter count alone, should guide model selection. With the release of Nemotron-51B and the presentation of the Puzzle framework, we provide practitioners immediate access to state-of-the-art language modeling capabilities at significantly reduced computational costs.
On the Higgs spectra of the 3-3-1 model with the sextet of scalars engendering the type II seesaw mechanism
In the 3-3-1 model with right-handed neutrinos, three triplets of scalars engender the correct sequence of symmetry breaking, SU(3)_C times SU(3)_L times U(1)_X rightarrow SU(3)_C times SU(2)_L times U(1)_Y rightarrow SU(3)_C times U(1)_{EM}, generating mass for all fermions, except neutrinos. Tiny neutrino masses may be achieved by adding one sextet of scalars to the original scalar content. As consequence, it emerges a very complex scalar sector, involving terms that violate lepton number explicitly, too. The main obstacle to the development of the phenomenology of such scenario is the knowledge of its spectrum of scalars since, now, there are 15 massive scalar particles on it. The proposal of this work is to do an exhaustive analysis of such scalar sector with lepton number being explicitly violated at low, electroweak and high energy scales by means of trilinear terms in the potential. The first case can be addressed analytically and, as a nice result, we have observed that the scalar content of such case is split into two categories: One belonging to the 331 energy scale and the other belonging to the EWSB energy scale, with the last recovering the well known THDM+triplet. For the other cases, the scalar sector can be addressed only numerically. Hence, we proposed a very general approach for the numerical study of the potential, avoiding simplifications that can make us reach conclusions without foundation. We show that, in the case of lepton number being explicitly violated at electroweak scale, it is possible to recover the same physics of the THDM+triplet, as the previous case. Among all the possibilities, we call the attention to one special case which generates the 3HDM+triplet scenario. For the last case, when lepton number is violated at high energy scale, the sextet become very massive and decouples from the original scalar content of the 3-3-1 model.
NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
WAVE: Machine Learning for Full-Waveform Time-Of-Flight Detectors
We propose a WAveform Vector Exploitation (WAVE) deep neural network for full-waveform Time-Of-Flight (TOF) physics detectors, and evaluate its performance against traditional reconstruction techniques via Monte Carlo study of a small plastic-scintillator scatter camera. Ultralytics LLC (www.ultralytics.com) provides WAVE freely under the open source GPL-3.0 license at https://github.com/ultralytics/wave.
PILArNet: Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics
Rapid advancement of machine learning solutions has often coincided with the production of a test public data set. Such datasets reduce the largest barrier to entry for tackling a problem -- procuring data -- while also providing a benchmark to compare different solutions. Furthermore, large datasets have been used to train high-performing feature finders which are then used in new approaches to problems beyond that initially defined. In order to encourage the rapid development in the analysis of data collected using liquid argon time projection chambers, a class of particle detectors used in high energy physics experiments, we have produced the PILArNet, first 2D and 3D open dataset to be used for a couple of key analysis tasks. The initial dataset presented in this paper contains 300,000 samples simulated and recorded in three different volume sizes. The dataset is stored efficiently in sparse 2D and 3D matrix format with auxiliary information about simulated particles in the volume, and is made available for public research use. In this paper we describe the dataset, tasks, and the method used to procure the sample.
Probing a diffuse flux of axion-like particles from galactic supernovae with neutrino water Cherenkov detectors
In this article, we claim that axion-like particles (ALPs) with MeV masses can be produced with semi-relativistic velocities in core-collapse supernovae (SNe), generating a diffuse galactic flux. We show that these ALPs can be detected in neutrino water Cherenkov detectors via a , p rightarrow p , gamma interactions. Using Super-Kamiokande data, we derive new constraints on the ALP parameter space, excluding a region spanning more than one order of magnitude in the ALP-proton coupling above cooling bounds for ALP masses in the range of 1-80 MeV and ALP-proton couplings between 6times10^{-6}-2times10^{-4}. We show that the future Hyper-Kamiokande will be able to probe couplings as small as 2times10^{-6}, fully closing the allowed region above SN 1987A cooling bounds.
MuonAll: Muon Variant for Efficient Finetuning of Large Language Models
Muon optimizer has demonstrated robust results in pretraining of language models but its performance in finetuning of existing public pretrained models is not yet explored. Currently, Muon is used along with AdamW introducing a scope of improvement for adopting all parameters inside Muon. We introduce MuonAll, which incorporates all the parameters inside Muon by transforming into 2D matrices. We conduct extensive finetuning experiments across publicly available language models with model sizes upto half billion parameters. Muon and MuonAll perform at par with AdamW across major benchmarks, highlighting their effectiveness as alternative optimizers. We open-source the distributed implementations of Muon and MuonAll, available at https://github.com/Saurabh750/optimizer
First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Photometric Pipeline and Light Curve Data Release
We present griz light curves of 251 Type Ia Supernovae (SNe Ia) from the first 3 years of the Dark Energy Survey Supernova Program's (DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the calibrated fluxes and associated uncertainties used in the cosmological parameter analysis (Brout et al. 2018-SYS, DES Collaboration et al. 2018) by employing a scene modeling approach that simultaneously forward models a variable transient flux and temporally constant host galaxy. We inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon comparison of input and measured artificial supernova fluxes, we find flux biases peak at 3 mmag. We require corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location, similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the light curves can be found at https://des.ncsa.illinois.edu/releases/sn.
GeoGalactica: A Scientific Large Language Model in Geoscience
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP). Due to their impressive abilities, LLMs have shed light on potential inter-discipline applications to foster scientific discoveries of a specific domain by using artificial intelligence (AI for science, AI4S). In the meantime, utilizing NLP techniques in geoscience research and practice is wide and convoluted, contributing from knowledge extraction and document classification to question answering and knowledge discovery. In this work, we take the initial step to leverage LLM for science, through a rather straightforward approach. We try to specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset. These efforts result in a model GeoGalactica consisting of 30 billion parameters. To our best knowledge, it is the largest language model for the geoscience domain. More specifically, GeoGalactica is from further pre-training of Galactica. We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens curated from extensive data sources in the big science project Deep-time Digital Earth (DDE), preserving as the largest geoscience-specific text corpus. Then we fine-tune the model with 1 million pairs of instruction-tuning data consisting of questions that demand professional geoscience knowledge to answer. In this technical report, we will illustrate in detail all aspects of GeoGalactica, including data collection, data cleaning, base model selection, pre-training, SFT, and evaluation. We open-source our data curation tools and the checkpoints of GeoGalactica during the first 3/4 of pre-training.
Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond
This paper presents our work on the Light-R1 series, with models, data, and code all released. We first focus on training long COT models from scratch, specifically starting from models initially lacking long COT capabilities. Using a curriculum training recipe consisting of two-stage SFT and semi-on-policy DPO, we train our model Light-R1-32B from Qwen2.5-32B-Instruct, resulting in superior math performance compared to DeepSeek-R1-Distill-Qwen-32B. Despite being trained exclusively on math data, Light-R1-32B shows strong generalization across other domains. In the subsequent phase of this work, we highlight the significant benefit of the 3k dataset constructed for the second SFT stage on enhancing other models. By fine-tuning DeepSeek-R1-Distilled models using this dataset, we obtain new SOTA models in 7B and 14B, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying reinforcement learning, specifically GRPO, on long-COT models to further improve reasoning performance. We successfully train our final Light-R1-14B-DS with RL, achieving SOTA performance among 14B parameter models in math. With AIME24 & 25 scores of 74.0 and 60.2 respectively, Light-R1-14B-DS surpasses even many 32B models and DeepSeek-R1-Distill-Llama-70B. Its RL training also exhibits well expected behavior, showing simultaneous increase in response length and reward score. The Light-R1 series of work validates training long-COT models from scratch, showcases the art in SFT data and releases SOTA models from RL.
HyperTrack: Neural Combinatorics for High Energy Physics
Combinatorial inverse problems in high energy physics span enormous algorithmic challenges. This work presents a new deep learning driven clustering algorithm that utilizes a space-time non-local trainable graph constructor, a graph neural network, and a set transformer. The model is trained with loss functions at the graph node, edge and object level, including contrastive learning and meta-supervision. The algorithm can be applied to problems such as charged particle tracking, calorimetry, pile-up discrimination, jet physics, and beyond. We showcase the effectiveness of this cutting-edge AI approach through particle tracking simulations. The code is available online.
NeuRI: Diversifying DNN Generation via Inductive Rule Inference
Deep Learning (DL) is prevalently used in various industries to improve decision-making and automate processes, driven by the ever-evolving DL libraries and compilers. The correctness of DL systems is crucial for trust in DL applications. As such, the recent wave of research has been studying the automated synthesis of test-cases (i.e., DNN models and their inputs) for fuzzing DL systems. However, existing model generators only subsume a limited number of operators, lacking the ability to pervasively model operator constraints. To address this challenge, we propose NeuRI, a fully automated approach for generating valid and diverse DL models composed of hundreds of types of operators. NeuRI adopts a three-step process: (i) collecting valid and invalid API traces from various sources; (ii) applying inductive program synthesis over the traces to infer the constraints for constructing valid models; and (iii) using hybrid model generation which incorporates both symbolic and concrete operators. Our evaluation shows that NeuRI improves branch coverage of TensorFlow and PyTorch by 24% and 15% over the state-of-the-art model-level fuzzers. NeuRI finds 100 new bugs for PyTorch and TensorFlow in four months, with 81 already fixed or confirmed. Of these, 9 bugs are labelled as high priority or security vulnerability, constituting 10% of all high-priority bugs of the period. Open-source developers regard error-inducing tests reported by us as "high-quality" and "common in practice".
DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models
Computation in a typical Transformer-based large language model (LLM) can be characterized by batch size, hidden dimension, number of layers, and sequence length. Until now, system works for accelerating LLM training have focused on the first three dimensions: data parallelism for batch size, tensor parallelism for hidden size and pipeline parallelism for model depth or layers. These widely studied forms of parallelism are not targeted or optimized for long sequence Transformer models. Given practical application needs for long sequence LLM, renewed attentions are being drawn to sequence parallelism. However, existing works in sequence parallelism are constrained by memory-communication inefficiency, limiting their scalability to long sequence large models. In this work, we introduce DeepSpeed-Ulysses, a novel, portable and effective methodology for enabling highly efficient and scalable LLM training with extremely long sequence length. DeepSpeed-Ulysses at its core partitions input data along the sequence dimension and employs an efficient all-to-all collective communication for attention computation. Theoretical communication analysis shows that whereas other methods incur communication overhead as sequence length increases, DeepSpeed-Ulysses maintains constant communication volume when sequence length and compute devices are increased proportionally. Furthermore, experimental evaluations show that DeepSpeed-Ulysses trains 2.5X faster with 4X longer sequence length than the existing method SOTA baseline.
Drop-Muon: Update Less, Converge Faster
Conventional wisdom in deep learning optimization dictates updating all layers at every step-a principle followed by all recent state-of-the-art optimizers such as Muon. In this work, we challenge this assumption, showing that full-network updates can be fundamentally suboptimal, both in theory and in practice. We introduce a non-Euclidean Randomized Progressive Training method-Drop-Muon-a simple yet powerful framework that updates only a subset of layers per step according to a randomized schedule, combining the efficiency of progressive training with layer-specific non-Euclidean updates for top-tier performance. We provide rigorous convergence guarantees under both layer-wise smoothness and layer-wise (L^0, L^1)-smoothness, covering deterministic and stochastic gradient settings, marking the first such results for progressive training in the stochastic and non-smooth regime. Our cost analysis further reveals that full-network updates are not optimal unless a very specific relationship between layer smoothness constants holds. Through controlled CNN experiments, we empirically demonstrate that Drop-Muon consistently outperforms full-network Muon, achieving the same accuracy up to 1.4times faster in wall-clock time. Together, our results suggest a shift in how large-scale models can be efficiently trained, challenging the status quo and offering a highly efficient, theoretically grounded alternative to full-network updates.
Bayesian Deep Learning for Exoplanet Atmospheric Retrieval
Over the past decade, the study of extrasolar planets has evolved rapidly from plain detection and identification to comprehensive categorization and characterization of exoplanet systems and their atmospheres. Atmospheric retrieval, the inverse modeling technique used to determine an exoplanetary atmosphere's temperature structure and composition from an observed spectrum, is both time-consuming and compute-intensive, requiring complex algorithms that compare thousands to millions of atmospheric models to the observational data to find the most probable values and associated uncertainties for each model parameter. For rocky, terrestrial planets, the retrieved atmospheric composition can give insight into the surface fluxes of gaseous species necessary to maintain the stability of that atmosphere, which may in turn provide insight into the geological and/or biological processes active on the planet. These atmospheres contain many molecules, some of them biosignatures, spectral fingerprints indicative of biological activity, which will become observable with the next generation of telescopes. Runtimes of traditional retrieval models scale with the number of model parameters, so as more molecular species are considered, runtimes can become prohibitively long. Recent advances in machine learning (ML) and computer vision offer new ways to reduce the time to perform a retrieval by orders of magnitude, given a sufficient data set to train with. Here we present an ML-based retrieval framework called Intelligent exoplaNet Atmospheric RetrievAl (INARA) that consists of a Bayesian deep learning model for retrieval and a data set of 3,000,000 synthetic rocky exoplanetary spectra generated using the NASA Planetary Spectrum Generator. Our work represents the first ML retrieval model for rocky, terrestrial exoplanets and the first synthetic data set of terrestrial spectra generated at this scale.
Nemotron-4 340B Technical Report
We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4-340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distribution, modification, and use of the models and its outputs. These models perform competitively to open access models on a wide range of evaluation benchmarks, and were sized to fit on a single DGX H100 with 8 GPUs when deployed in FP8 precision. We believe that the community can benefit from these models in various research studies and commercial applications, especially for generating synthetic data to train smaller language models. Notably, over 98% of data used in our model alignment process is synthetically generated, showcasing the effectiveness of these models in generating synthetic data. To further support open research and facilitate model development, we are also open-sourcing the synthetic data generation pipeline used in our model alignment process.
Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)
We describe the simulated data sample for the "Photometric LSST Astronomical Time Series Classification Challenge" (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to 2018 December 17, and included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of type Ia supernova used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models.
Stochastic lensing of stars by ultralight dark matter halos
Ultralight dark matter is an interesting dark matter candidate describing the lightest end of the mass parameter space. This model produces an oscillating granular pattern in halo densities. These fluctuations have the potential to produce a time-varying density along the line of sight creating a small lensing signal for any stars observed through a dark matter halo which oscillates on the de Broglie timescale. In this work, we study this stochastic lensing signal taking into account the impact of density granules as well as the central soliton. We calculate the amplitude and temporal properties of this signal and estimate how stellar observations may be used to constrain the ultralight dark matter mass and abundance.
The Impact of Population III.1 Flash Reionization for CMB Polarization and Thomson Scattering Optical Depth
The Population III.1 theory for supermassive black hole (SMBH) formation predicts a very early (zsim20-25), transient phase, ``The Flash'', of cosmic reionization powered by supermassive stars that are SMBH progenitors. The universe then quickly recombined to become mostly neutral, with this state persisting until galaxies begin to reionize intergalactic gas again at zsim 10. The overall Thomson scattering optical depth, tau, from The Flash has been shown to be tau_{rm PopIII.1}sim0.03, leading to a total tausim0.08-0.09. Such a value, while significantly larger than that previously inferred from {\it Planck} observations of the low-l EE polarization power spectrum of the CMB, can help relieve several ``tensions'' faced by the standard LambdaCDM cosmological model, especially the preference for negative neutrino masses and dynamic dark energy. Here we compute EE power spectra of example models of The Flash. We find that, because of its very high redshift, the contribution to llesssim8 modes is dramatically reduced compared to usual low-z reionization models for the same value of tau, while the power at lgtrsim8 is boosted. Thus the Pop III.1 reionization scenario provides a natural way to increase tau, while remaining closer to the latest CMB low-l polarization observations.
R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis
Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.
Shaping Laser Pulses with Reinforcement Learning
High Power Laser (HPL) systems operate in the attoseconds regime -- the shortest timescale ever created by humanity. HPL systems are instrumental in high-energy physics, leveraging ultra-short impulse durations to yield extremely high intensities, which are essential for both practical applications and theoretical advancements in light-matter interactions. Traditionally, the parameters regulating HPL optical performance have been manually tuned by human experts, or optimized using black-box methods that can be computationally demanding. Critically, black box methods rely on stationarity assumptions overlooking complex dynamics in high-energy physics and day-to-day changes in real-world experimental settings, and thus need to be often restarted. Deep Reinforcement Learning (DRL) offers a promising alternative by enabling sequential decision making in non-static settings. This work explores the feasibility of applying DRL to HPL systems, extending the current research by (1) learning a control policy relying solely on non-destructive image observations obtained from readily available diagnostic devices, and (2) retaining performance when the underlying dynamics vary. We evaluate our method across various test dynamics, and observe that DRL effectively enables cross-domain adaptability, coping with dynamics' fluctuations while achieving 90\% of the target intensity in test environments.
Nerva: a Truly Sparse Implementation of Neural Networks
We introduce Nerva, a fast neural network library under development in C++. It supports sparsity by using the sparse matrix operations of Intel's Math Kernel Library (MKL), which eliminates the need for binary masks. We show that Nerva significantly decreases training time and memory usage while reaching equivalent accuracy to PyTorch. We run static sparse experiments with an MLP on CIFAR-10. On high sparsity levels like 99%, the runtime is reduced by a factor of 4times compared to a PyTorch model using masks. Similar to other popular frameworks such as PyTorch and Keras, Nerva offers a Python interface for users to work with.
Scaling LLaNA: Advancing NeRF-Language Understanding Through Large-Scale Training
Recent advances in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in understanding both images and 3D data, yet these modalities face inherent limitations in comprehensively representing object geometry and appearance. Neural Radiance Fields (NeRFs) have emerged as a promising alternative, encoding both geometric and photorealistic properties within the weights of a simple Multi-Layer Perceptron (MLP). This work investigates the feasibility and effectiveness of ingesting NeRFs into an MLLM. We introduce LLaNA, the first MLLM able to perform new tasks such as NeRF captioning and Q\&A, by directly processing the weights of a NeRF's MLP. Notably, LLaNA is able to extract information about the represented objects without the need to render images or materialize 3D data structures. In addition, we build the first large-scale NeRF-language dataset, composed by more than 300K NeRFs trained on ShapeNet and Objaverse, with paired textual annotations that enable various NeRF-language tasks. Based on this dataset, we develop a benchmark to evaluate the NeRF understanding capability of our method. Results show that directly processing NeRF weights leads to better performance on NeRF-Language tasks compared to approaches that rely on either 2D or 3D representations derived from NeRFs.
Analysis of the JWST spectra of the kilonova AT 2023vfi accompanying GRB 230307A
Kilonovae are key to advancing our understanding of r-process nucleosynthesis. To date, only two kilonovae have been spectroscopically observed, AT 2017gfo and AT 2023vfi. Here, we present an analysis of the James Webb Space Telescope (JWST) spectra obtained +29 and +61 days post-merger for AT 2023vfi (the kilonova associated with GRB 230307A). After re-reducing and photometrically flux-calibrating the data, we empirically model the observed X-ray to mid-infrared continua with a power law and a blackbody, to replicate the non-thermal afterglow and apparent thermal continuum gtrsim 2 , mum. We fit Gaussians to the apparent emission features, obtaining line centroids of 20218_{-38}^{+37}, 21874 pm 89 and 44168_{-152}^{+153}\,\AA, and velocity widths spanning 0.057 - 0.110\,c. These line centroid constraints facilitated a detailed forbidden line identification search, from which we shortlist a number of r-process species spanning all three r-process peaks. We rule out Ba II and Ra II as candidates and propose Te I-III, Er I-III and W III as the most promising ions for further investigation, as they plausibly produce multiple emission features from one (W III) or multiple (Te I-III, Er I-III) ion stages. We compare to the spectra of AT 2017gfo, which also exhibit prominent emission at sim 2.1 , mum, and conclude that [Te III] lambda21050 remains the most plausible cause of the observed sim 2.1 , mum emission in both kilonovae. However, the observed line centroids are not consistent between both objects, and they are significantly offset from [Te III] lambda21050. The next strongest [Te III] transition at 29290\,\AA\ is not observed, and we quantify its detectability. Further study is required, with particular emphasis on expanding the available atomic data to enable quantitative non-LTE spectral modelling.
Explanation of the 95 GeV γγ and bb excesses in the Minimal Left-Right Symmetric Model
We propose a simple interpretation of the gammagamma excesses reported by both CMS and ATLAS groups at 95 GeV together with the LEP excess in the Zbb channel around the same mass in terms of a neutral scalar field in the minimal left-right symmetric model (LRSM). We point out that the scalar field which implements the seesaw mechanism for neutrino masses has all the right properties to explain these observations, without introducing any extra scalar fields. The key point is that this scalar particle is hardly constrained because it couples only to heavy right-handed particles. As a result, the diphoton decay mode receives contributions from both mixing with the Standard Model (SM) Higgs and the heavy charged bosons in the LRSM, depending on the SU(2)_Rtimes U(1)_{B-L} symmetry breaking scale v_R. The complete allowed parameter space for explaining the 95 GeV excesses in this model can be probed with the high-precision measurements of the SM Higgs mixing with other scalars at the high-luminosity LHC and future Higgs factories.
DeepFlow: Serverless Large Language Model Serving at Scale
This paper introduces DeepFlow, a scalable and serverless AI platform designed to efficiently serve large language models (LLMs) at scale in cloud environments. DeepFlow addresses key challenges such as resource allocation, serving efficiency, and cold start latencies through four main design components. First, it uses a simple serverless abstraction called the request-job-task model, which helps manage AI workloads across post-training and model serving tasks. Second, it builds an in-house serving engine FlowServe using a microkernel-inspired design, NPU-centric execution, and SPMD-based parallelism to optimize LLM serving. The system also includes novel scheduling policies tailored for both PD-disaggregated and PD-colocated configurations. With optimizations like pre-warmed pods, DRAM pre-loading, and NPU-fork, DeepFlow can scale up to 64 instances in seconds. DeepFlow has been in production for over a year, operating on a large Ascend NPU cluster and providing industrystandard APIs for fine-tuning, agent serving, and model serving to our customers.
Do Language Models Use Their Depth Efficiently?
Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1 and Qwen 3 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.
ExoMiner++ on TESS with Transfer Learning from Kepler: Transit Classification and Vetting Catalog for 2-min Data
We present ExoMiner++, an enhanced deep learning model that builds on the success of ExoMiner to improve transit signal classification in 2-minute TESS data. ExoMiner++ incorporates additional diagnostic inputs, including periodogram, flux trend, difference image, unfolded flux, and spacecraft attitude control data, all of which are crucial for effectively distinguishing transit signals from more challenging sources of false positives. To further enhance performance, we leverage transfer learning from high-quality labeled data from the Kepler space telescope, mitigating the impact of TESS's noisier and more ambiguous labels. ExoMiner++ achieves high accuracy across various classification and ranking metrics, significantly narrowing the search space for follow-up investigations to confirm new planets. To serve the exoplanet community, we introduce new TESS catalogs containing ExoMiner++ classifications and confidence scores for each transit signal. Among the 147,568 unlabeled TCEs, ExoMiner++ identifies 7,330 as planet candidates, with the remainder classified as false positives. These 7,330 planet candidates correspond to 1,868 existing TESS Objects of Interest (TOIs), 69 Community TESS Objects of Interest (CTOIs), and 50 newly introduced CTOIs. 1,797 out of the 2,506 TOIs previously labeled as planet candidates in ExoFOP are classified as planet candidates by ExoMiner++. This reduction in plausible candidates combined with the excellent ranking quality of ExoMiner++ allows the follow-up efforts to be focused on the most likely candidates, increasing the overall planet yield.
Supernova Light Curves Approximation based on Neural Network Models
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy. Recent studies have demonstrated the superior quality of solutions based on various machine learning models. These models learn to classify supernova types using their light curves as inputs. Preprocessing these curves is a crucial step that significantly affects the final quality. In this talk, we study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve. We use these approximations as inputs for supernovae classification models and demonstrate that the proposed methods outperform the state-of-the-art based on Gaussian processes applying to the Zwicky Transient Facility Bright Transient Survey light curves. MLP demonstrates similar quality as Gaussian processes and speed increase. Normalizing Flows exceeds Gaussian processes in terms of approximation quality as well.
LightSeq: Sequence Level Parallelism for Distributed Training of Long Context Transformers
Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at https://github.com/RulinShao/LightSeq.
Aurora: A Foundation Model of the Atmosphere
Deep learning foundation models are revolutionizing many facets of science by leveraging vast amounts of data to learn general-purpose representations that can be adapted to tackle diverse downstream tasks. Foundation models hold the promise to also transform our ability to model our planet and its subsystems by exploiting the vast expanse of Earth system data. Here we introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data. Aurora leverages the strengths of the foundation modelling approach to produce operational forecasts for a wide variety of atmospheric prediction problems, including those with limited training data, heterogeneous variables, and extreme events. In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts that outperform state-of-the-art classical simulation tools and the best specialized deep learning models. Taken together, these results indicate that foundation models can transform environmental forecasting.
FocalFormer3D : Focusing on Hard Instance for 3D Object Detection
False negatives (FN) in 3D object detection, {\em e.g.}, missing predictions of pedestrians, vehicles, or other obstacles, can lead to potentially dangerous situations in autonomous driving. While being fatal, this issue is understudied in many current 3D detection methods. In this work, we propose Hard Instance Probing (HIP), a general pipeline that identifies FN in a multi-stage manner and guides the models to focus on excavating difficult instances. For 3D object detection, we instantiate this method as FocalFormer3D, a simple yet effective detector that excels at excavating difficult objects and improving prediction recall. FocalFormer3D features a multi-stage query generation to discover hard objects and a box-level transformer decoder to efficiently distinguish objects from massive object candidates. Experimental results on the nuScenes and Waymo datasets validate the superior performance of FocalFormer3D. The advantage leads to strong performance on both detection and tracking, in both LiDAR and multi-modal settings. Notably, FocalFormer3D achieves a 70.5 mAP and 73.9 NDS on nuScenes detection benchmark, while the nuScenes tracking benchmark shows 72.1 AMOTA, both ranking 1st place on the nuScenes LiDAR leaderboard. Our code is available at https://github.com/NVlabs/FocalFormer3D.
Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. Our source codes are anonymously released at https://github.com/aihao2000/DPN-LLaVA.
Dark Matter Catalyzed Baryon Destruction
WIMP-type dark matter may have additional interactions that break baryon number, leading to induced nucleon decays which are subject to direct experimental constraints from proton decay experiments. In this work, we analyze the possibility of continuous baryon destruction, deriving strong limits from the dark matter accumulating inside old neutron stars, as such a process leads to excess heat generation. We construct the simplest particle dark matter model that breaks baryon and lepton numbers separately but conserves B-L. Virtual exchange by DM particles in this model results in di-nucleon decay via nnto nbarnu and npto ne^+ processes.
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs
Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.
Discovering Symbolic Models from Deep Learning with Inductive Biases
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.
AstroMLab 1: Who Wins Astronomy Jeopardy!?
We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.
NAUTILUS: A Large Multimodal Model for Underwater Scene Understanding
Underwater exploration offers critical insights into our planet and attracts increasing attention for its broader applications in resource exploration, national security, etc. We study the underwater scene understanding methods, which aim to achieve automated underwater exploration. The underwater scene understanding task demands multi-task perceptions from multiple granularities. However, the absence of large-scale underwater multi-task instruction-tuning datasets hinders the progress of this research. To bridge this gap, we construct NautData, a dataset containing 1.45 M image-text pairs supporting eight underwater scene understanding tasks. It enables the development and thorough evaluation of the underwater scene understanding models. Underwater image degradation is a widely recognized challenge that interferes with underwater tasks. To improve the robustness of underwater scene understanding, we introduce physical priors derived from underwater imaging models and propose a plug-and-play vision feature enhancement (VFE) module, which explicitly restores clear underwater information. We integrate this module into renowned baselines LLaVA-1.5 and Qwen2.5-VL and build our underwater LMM, NAUTILUS. Experiments conducted on the NautData and public underwater datasets demonstrate the effectiveness of the VFE module, consistently improving the performance of both baselines on the majority of supported tasks, thus ensuring the superiority of NAUTILUS in the underwater scene understanding area. Data and models are available at https://github.com/H-EmbodVis/NAUTILUS.
LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts in Instruction Finetuning MLLMs
Instruction finetuning on a variety of image-text instruction data is the key to obtaining a versatile Multimodal Large Language Model (MLLM), and different configurations of the instruction data can lead to finetuned models with different capabilities. However, we have discovered that data conflicts are inevitable when mixing instruction data from distinct domains, which can result in performance drops for tasks of a specific domain. To address this issue, we propose to apply an efficient Mixture of Experts (MoE) design, which is a sparse Mixture of LoRA Experts (MoLE) for instruction finetuning MLLMs. Within the Transformer layers, we extend the popular Low-Rank Adaption (LoRA) method by creating a set of LoRA experts specifically for the MLP layer, and route each token to the top-1 expert based on a routing function, allowing adaptive choices for tokens from different domains. Since the LoRA experts are sparsely activated, the training and inference cost are kept roughly constant compared to the original LoRA method. By replacing the plain-LoRA of LLaVA-1.5 with our MoE design, our final model is named LLaVA-MoLE. Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets with various configurations, and achieves consistent performance gains over the strong plain-LoRA baselines. Most importantly, on the mixed datasets, LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.
SenseNova-MARS: Empowering Multimodal Agentic Reasoning and Search via Reinforcement Learning
While Vision-Language Models (VLMs) can solve complex tasks through agentic reasoning, their capabilities remain largely constrained to text-oriented chain-of-thought or isolated tool invocation. They fail to exhibit the human-like proficiency required to seamlessly interleave dynamic tool manipulation with continuous reasoning, particularly in knowledge-intensive and visually complex scenarios that demand coordinated external tools such as search and image cropping. In this work, we introduce SenseNova-MARS, a novel Multimodal Agentic Reasoning and Search framework that empowers VLMs with interleaved visual reasoning and tool-use capabilities via reinforcement learning (RL). Specifically, SenseNova-MARS dynamically integrates the image search, text search, and image crop tools to tackle fine-grained and knowledge-intensive visual understanding challenges. In the RL stage, we propose the Batch-Normalized Group Sequence Policy Optimization (BN-GSPO) algorithm to improve the training stability and advance the model's ability to invoke tools and reason effectively. To comprehensively evaluate the agentic VLMs on complex visual tasks, we introduce the HR-MMSearch benchmark, the first search-oriented benchmark composed of high-resolution images with knowledge-intensive and search-driven questions. Experiments demonstrate that SenseNova-MARS achieves state-of-the-art performance on open-source search and fine-grained image understanding benchmarks. Specifically, on search-oriented benchmarks, SenseNova-MARS-8B scores 67.84 on MMSearch and 41.64 on HR-MMSearch, surpassing proprietary models such as Gemini-3-Flash and GPT-5. SenseNova-MARS represents a promising step toward agentic VLMs by providing effective and robust tool-use capabilities. To facilitate further research in this field, we will release all code, models, and datasets.
Ground-based image deconvolution with Swin Transformer UNet
As ground-based all-sky astronomical surveys will gather millions of images in the coming years, a critical requirement emerges for the development of fast deconvolution algorithms capable of efficiently improving the spatial resolution of these images. By successfully recovering clean and high-resolution images from these surveys, the objective is to deepen the understanding of galaxy formation and evolution through accurate photometric measurements. We introduce a two-step deconvolution framework using a Swin Transformer architecture. Our study reveals that the deep learning-based solution introduces a bias, constraining the scope of scientific analysis. To address this limitation, we propose a novel third step relying on the active coefficients in the sparsity wavelet framework. We conducted a performance comparison between our deep learning-based method and Firedec, a classical deconvolution algorithm, based on an analysis of a subset of the EDisCS cluster samples. We demonstrate the advantage of our method in terms of resolution recovery, generalisation to different noise properties, and computational efficiency. The analysis of this cluster sample not only allowed us to assess the efficiency of our method, but it also enabled us to quantify the number of clumps within these galaxies in relation to their disc colour. This robust technique that we propose holds promise for identifying structures in the distant universe through ground-based images.
Solar Event Tracking with Deep Regression Networks: A Proof of Concept Evaluation
With the advent of deep learning for computer vision tasks, the need for accurately labeled data in large volumes is vital for any application. The increasingly available large amounts of solar image data generated by the Solar Dynamic Observatory (SDO) mission make this domain particularly interesting for the development and testing of deep learning systems. The currently available labeled solar data is generated by the SDO mission's Feature Finding Team's (FFT) specialized detection modules. The major drawback of these modules is that detection and labeling is performed with a cadence of every 4 to 12 hours, depending on the module. Since SDO image data products are created every 10 seconds, there is a considerable gap between labeled observations and the continuous data stream. In order to address this shortcoming, we trained a deep regression network to track the movement of two solar phenomena: Active Region and Coronal Hole events. To the best of our knowledge, this is the first attempt of solar event tracking using a deep learning approach. Since it is impossible to fully evaluate the performance of the suggested event tracks with the original data (only partial ground truth is available), we demonstrate with several metrics the effectiveness of our approach. With the purpose of generating continuously labeled solar image data, we present this feasibility analysis showing the great promise of deep regression networks for this task.
An X-ray Significantly Variable, Luminous, Type 2 Quasar at z = 2.99 with a Massive Host Galaxy
We present a comprehensive X-ray analysis and spectral energy distribution (SED) fitting of WISEA J171419.96+602724.6, an extremely luminous type 2 quasar at z = 2.99. The source was suggested as a candidate Compton-thick (column density N_{rm H}>1.5 times 10^{24} cm^{-2}) quasar by a short XMM-Newton observation in 2011. We recently observed the source with deep NuSTAR and XMM-Newton exposures in 2021 and found that the source has a lower obscuration of N_{rm H}sim5 times 10^{22} cm^{-2} with an about four times lower flux. The two epochs of observations suggested that the source was significantly variable in X-ray obscuration, flux, and intrinsic luminosity at 2-3~sigma in less than 2.5 years (in the source rest frame). We performed SED fitting of this source using CIGALE thanks to its great availability of multiwavelength data (from hard X-rays to radio). The source is very luminous with a bolometric luminosity of L_{rm BOL}sim 2.5 times 10^{47} erg s^{-1}. Its host galaxy has a huge star formation rate (SFR) of sim1280 Solar mass yr^{-1} and a huge stellar mass of sim1.1 times 10^{12} Solar mass. The correlation between the SFR and stellar mass of this source is consistent with what was measured in the high-z quasars. It is also consistent with what was measured in the main-sequence star-forming galaxies, suggesting that the presence of the active nucleus in our target does not enhance or suppress the SFR of its host galaxy. The source is an Infrared hyper-luminous, obscured galaxy with significant amount of hot dust in its torus and shares many similar properties with hot, dust obscured galaxies.
Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research
Cancer is a complex disease, the understanding and treatment of which are being aided through increases in the volume of collected data and in the scale of deployed computing power. Consequently, there is a growing need for the development of data-driven and, in particular, deep learning methods for various tasks such as cancer diagnosis, detection, prognosis, and prediction. Despite recent successes, however, designing high-performing deep learning models for nonimage and nontext cancer data is a time-consuming, trial-and-error, manual task that requires both cancer domain and deep learning expertise. To that end, we develop a reinforcement-learning-based neural architecture search to automate deep-learning-based predictive model development for a class of representative cancer data. We develop custom building blocks that allow domain experts to incorporate the cancer-data-specific characteristics. We show that our approach discovers deep neural network architectures that have significantly fewer trainable parameters, shorter training time, and accuracy similar to or higher than those of manually designed architectures. We study and demonstrate the scalability of our approach on up to 1,024 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.
Dark forces suppress structure growth
No experimental test precludes the possibility that the dark matter experiences forces beyond general relativity -- in fact, a variety of cosmic microwave background observations suggest greater late-time structure than predicted in the standard Lambda cold dark matter model. We show that minimal models of scalar-mediated forces between dark matter particles do not enhance the growth of unbiased tracers of structure: weak lensing observables depend on the total density perturbation, for which the enhanced growth of the density contrast in the matter era is cancelled by the more rapid dilution of the background dark matter density. Moreover, the same background-level effects imply that scenarios compatible with CMB temperature and polarization anisotropies in fact suppress structure growth, as fixing the distance to last scattering requires a substantially increased density of dark energy. Though massive mediators undo these effects upon oscillating, they suppress structure even further because their gravitational impact as nonclustering subcomponents of matter outweighs the enhanced clustering strength of dark matter. We support these findings with analytic insight that clarifies the physical impact of dark forces and explains how primary CMB measurements calibrate the model's predictions for low-redshift observables. We discuss implications for neutrino mass limits and other cosmological anomalies, and we also consider how nonminimal extensions of the model might be engineered to enhance structure.
Automated Deep Learning: Neural Architecture Search Is Not the End
Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts, including visual perception, speech recognition, and machine translation. However, the end-to-end process for applying DL is not trivial. It requires grappling with problem formulation and context understanding, data engineering, model development, deployment, continuous monitoring and maintenance, and so on. Moreover, each of these steps typically relies heavily on humans, in terms of both knowledge and interactions, which impedes the further advancement and democratization of DL. Consequently, in response to these issues, a new field has emerged over the last few years: automated deep learning (AutoDL). This endeavor seeks to minimize the need for human involvement and is best known for its achievements in neural architecture search (NAS), a topic that has been the focus of several surveys. That stated, NAS is not the be-all and end-all of AutoDL. Accordingly, this review adopts an overarching perspective, examining research efforts into automation across the entirety of an archetypal DL workflow. In so doing, this work also proposes a comprehensive set of ten criteria by which to assess existing work in both individual publications and broader research areas. These criteria are: novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality, scalability, generalizability, and eco-friendliness. Thus, ultimately, this review provides an evaluative overview of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.
Deep Learning for Melt Pool Depth Contour Prediction From Surface Thermal Images via Vision Transformers
Insufficient overlap between the melt pools produced during Laser Powder Bed Fusion (L-PBF) can lead to lack-of-fusion defects and deteriorated mechanical and fatigue performance. In-situ monitoring of the melt pool subsurface morphology requires specialized equipment that may not be readily accessible or scalable. Therefore, we introduce a machine learning framework to correlate in-situ two-color thermal images observed via high-speed color imaging to the two-dimensional profile of the melt pool cross-section. Specifically, we employ a hybrid CNN-Transformer architecture to establish a correlation between single bead off-axis thermal image sequences and melt pool cross-section contours measured via optical microscopy. In this architecture, a ResNet model embeds the spatial information contained within the thermal images to a latent vector, while a Transformer model correlates the sequence of embedded vectors to extract temporal information. Our framework is able to model the curvature of the subsurface melt pool structure, with improved performance in high energy density regimes compared to analytical melt pool models. The performance of this model is evaluated through dimensional and geometric comparisons to the corresponding experimental melt pool observations.
